571 research outputs found

    Interacting quintessence and the coincidence problem

    Full text link
    We investigate the role of a possible coupling of dark matter and dark energy. In particular, we explore the consequences of such an interaction for the coincidence problem, i.e., for the question, why the energy densities of dark matter and dark energy are of the same order just at the present epoch. We demonstrate, that, with the help of a suitable coupling, it is possible to reproduce any scaling solution ρX∝ρMaΟ\rho_X \propto \rho_M a^\xi, where aa is the scale factor of the Robertson-Walker metric and Ο\xi is a constant parameter. ρX\rho_X and ρM\rho_M are the densities of dark energy and dark matter, respectively. Furthermore, we show that an interaction between dark matter and dark energy can drive the transition from an early matter dominated era to a phase of accelerated expansion with a stable, stationary ratio of the energy densities of both components.Comment: 3 pages, contribution to the Tenth Marcel Grossmann Meeting, Rio de Janeiro, 20-26 July 200

    Deuteron Matrix Elements in Chiral Effective Theory at Leading Order

    Get PDF
    We consider matrix elements of two-nucleon operators that arise in chiral effective theories of the two-nucleon system. Generically, the short-distance piece of these operators scales as 1/r^n, with r the relative separation of the two nucleons. We show that, when evaluated between the leading-order wave functions obtained in this effective theory, these two-nucleon operators are independent of the cutoff used to renormalize the two-body problem for n=1 and 2. However, for n greater than or equal to 3 general arguments about the short-distance behavior of the leading-order deuteron wave function show that the matrix element will diverge.Comment: 7 pages, 5 .eps figure

    On the stochastic mechanics of the free relativistic particle

    Full text link
    Given a positive energy solution of the Klein-Gordon equation, the motion of the free, spinless, relativistic particle is described in a fixed Lorentz frame by a Markov diffusion process with non-constant diffusion coefficient. Proper time is an increasing stochastic process and we derive a probabilistic generalization of the equation (dτ)2=−1c2dXÎœdXÎœ(d\tau)^2=-\frac{1}{c^2}dX_{\nu}dX_{\nu}. A random time-change transformation provides the bridge between the tt and the τ\tau domain. In the τ\tau domain, we obtain an \M^4-valued Markov process with singular and constant diffusion coefficient. The square modulus of the Klein-Gordon solution is an invariant, non integrable density for this Markov process. It satisfies a relativistically covariant continuity equation

    Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability

    Get PDF
    The paper presents the design and control strategy of an isolated DC microgrid, which is based on classical control techniques, predictive control and iterative algorithms. The design control parameters are maximum overshoot, settling time and voltage ripple. The strategy is designed to operate in two different modes, end-users minimum and maximum demand scenarios, and this is achieved through the incorporation of network dynamic loads. The control methodology developed allows to obtain a fast response of the design set points, and an efficient control for disturbance rejection. The simulation results obtained satisfy the proposed design guidelines by obtaining a maximum overshoot of 4.8%, settling time of 0.012 seconds and a voltage ripple of 0.1 percentage. The implemented system simulation was developed in Matlab-Simulink software

    Associations between body composition and bone health in children and adolescents : a systematic review

    Get PDF
    More clarification on the associations between children's and adolescents' lean and fat mass (LM and FM) on the one hand and their bone health on the other hand is needed, given the rising prevalence of overweight and obesity in this population. This systematic literature review aimed to describe the current evidence on these associations. Data sources were Medline/PubMed, EMBASE, CINAHL and The Cochrane Library (up to November 2014). Search items included LM, FM, children and adolescents (0-18 years), bone health measured with dual-energy X-ray absorptiometry and peripheral quantitative computed tomography (pQCT) and search items concerning study design: observational and longitudinal studies. The study populations were healthy children and adolescents including obese children. Children with other diseases and clinical series of study subjects were excluded. Based on the studies included in this review (n = 19), there is a consensus that the contribution of LM to the variance of the different bone parameters is larger than the contribution of FM and that an increase in LM is associated with an increase in bone parameters. Most of the studies indicated that the increase in bone parameters seen in overweight and obese children and adolescents is due to an increase in LM and not to greater FM. The results on the association between body fat and bone parameters were contradictory and depended on children's age and sex. Still more data from studies with a longitudinal study design using (high resolution) pQCT and a representative sample are needed to get further insight in the associations between body fat and bone parameters in children, specifically concerning differences in sex, skeletal site and fat depots

    Cosmological solutions with nonlinear bulk viscosity

    Get PDF
    A recently proposed nonlinear transport equation is used to model bulk viscous cosmologies that may be far from equilibrium, as happens during viscous fluid inflation or during reheating. The asymptotic stability of the de Sitter and Friedmann solutions is investigated. The former is stable for bulk viscosity index q1q1. New solutions are obtained in the weakly nonlinear regime for q=1q=1. These solutions are singular and some of them represent a late-time inflationary era.Comment: 16 pages Latex (IOP style); to appear Class. Quantum Gra

    Stable Inflationary Dissipative Cosmologies

    Get PDF
    The stability of the de Sitter era of cosmic expansion in spatially curved homogeneous isotropic universes is studied. The source of the gravitational field is an imperfect fluid such that the parameters that characterize it may change with time. In this way we extend our previous analysis for spatially-flat spaces as well as the work of Barrow.Comment: 13 pages, LaTeX 2.09, 1 figure. To be published in International Journal of Modern Physics

    Lemaitre-Tolman-Bondi dust spacetimes: Symmetry properties and some extensions to the dissipative case

    Full text link
    We consider extensions of Lemaitre-Tolman-Bondi (LTB) spacetimes to the dissipative case. For doing that we previously carry out a systematic study on LTB. This study is based on two different aspects of LTB. On the one hand, a symmetry property of LTB will be presented. On the other hand, the description of LTB in terms of some fundamental scalar functions (structure scalars) appearing in the orthogonal splitting of Riemann tensor will be provided. We shall consider as "natural" generalizations of LTB (hereafter referred to as GLTB) either those metrics admitting some similar kind of symmetry as LTB, or those sharing structure scalars with similar dependence on the metric.Comment: 13 pages RevTex. To appear in Phys. Rev. D. Some references corrected and update

    Thermodynamics of a black hole in a cavity

    Get PDF
    We present a unified thermodynamical description of the configurations consisting on self-gravitating radiation with or without a black hole. We compute the thermal fluctuations and evaluate where will they induce a transition from metastable configurations towards stable ones. We show that the probability of finding such a transition is exponentially small. This indicates that, in a sequence of quasi equilibrium configurations, the system will remain in the metastable states till it approaches very closely the critical point beyond which no metastable configuration exists. Near that point, we relate the divergence of the local temperature fluctuations to the approach of the instability of the whole system, thereby generalizing the usual fluctuations analysis in the cases where long range forces are present. When angular momentum is added to the cavity, the above picture is slightly modified. Nevertheless, at high angular momentum, the black hole loses most of its mass before it reaches the critical point at which it evaporates completely.Comment: 27 pages, latex file, contains 3 figures available on request at [email protected]

    Renormalization Group Approach to Causal Viscous Cosmological Models

    Full text link
    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type Universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, of the causal evolution equation of the bulk viscous pressure and of the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale invariant fixed point, therefore obtaining the long time behavior of the scale factor.Comment: 19 pages. RevTeX4. Revised version. Accepted in Classical and Quantum Gravit
    • 

    corecore