11 research outputs found

    Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie

    No full text
    Box jellyfish, cubomedusae, possess an impressive total of 24 eyes of four morphologically different types. Two of these eye types, called the upper and lower lens eyes, are camera-type eyes with spherical fish-like lenses. Compared with other cnidarians, cubomedusae also have an elaborate behavioral repertoire, which seems to be predominantly visually guided. Still, positive phototaxis is the only behavior described so far that is likely to be correlated with the eyes. We have explored the obstacle avoidance response of the Caribbean species Tripedalia cystophora and the Australian species Chiropsella bronzie in a flow chamber. Our results show that obstacle avoidance is visually guided. Avoidance behavior is triggered when the obstacle takes up a certain angle in the visual field. The results do not allow conclusions on whether color vision is involved but the strength of the response had a tendency to follow the intensity contrast between the obstacle and the surroundings (chamber walls). In the flow chamber Tripedalia cystophora displayed a stronger obstacle avoidance response than Chiropsella bronzie since they had less contact with the obstacles. This seems to follow differences in their habitats

    SITES AquaNet : An open infrastructure for mesocosm experiments with high frequency sensor monitoring across lakes

    No full text
    For aquatic scientists mesocosm experiments are important tools for hypothesis testing as they offer a compromise between experimental control and realism. Here we present a new mesocosm infrastructure-SITES AquaNET-located in five lakes connected to field stations in Sweden that cover a similar to 760 km latitudinal gradient. SITES AquaNet overcomes major hindrances in aquatic experimental research through: (i) openness to the scientific community, (ii) the potential to implement coordinated experiments across sites and time, and (iii) high-frequency measurements (temperature, photosynthetic photon flux density, turbidity and dissolved oxygen, chlorophyll a and phycocyanin concentrations) with an autonomous sensor system. Moreover, the infrastructure provides operational guidance and sensor expertise from technical staff, and connections to a multi-layered monitoring programme ("SITES Water") for each lake. This enables ecological observations from whole lake ecosystems to be compared with experimental studies aiming at disentangling major drivers and mechanisms underlying observed changes. Here we describe the technical properties of the infrastructure along with possibilities for experimental manipulations to tackle pressing issues in aquatic ecology and global change science. As a proof of concept, we also present a first mesocosm experiment across all five field sites with a cross-factorial design to evaluate responses of the sensor measurements to press/bottom-up (constant light reduction) and pulse/top-down (temporary fish predation) disturbances. This demonstrates the suitability of the infrastructure and autonomous sensor system to host modularized experiments and exemplifies the power and advantages of the approach to integrate a network of mecsocosm facilities with manageable costs across large geographic areas

    From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system

    No full text
    corecore