117 research outputs found

    Reverse rotations in the circularly-driven motion of a rigid body

    Full text link
    We study the dynamical response of a circularly-driven rigid body, focusing on the description of intrinsic rotational behavior (reverse rotations). The model system we address is integrable but nontrivial, allowing for qualitative and quantitative analysis. A scale free expression defining the separation between possible spinning regimes is obtained.Comment: This work is accepted for publication as a Rapid Communication in Physical Review

    A New Model for Care: A Case Study in Creating Community among Persons With and Without Intellectual Disabilities

    Get PDF
    Traditional models of care as experienced by persons with intellectual disabilities tend to be unidirectional and create a power relationship between caregiver and patient. The relatively new theoretical concept of mutual care provides a way of breaking down the existing power relation between caregiver and patient to make way for a more integrative model, namely care as partnership. In this ethnography, I examine the relationships between conventional caregivers and patients in the context of L’Arche, a community of people with and without intellectual disabilities founded on the notion of mutuality in relationships across differences. Recording the varying experiences of care lived by members of the L’Arche community of Il Chicco in Rome illuminates the risks and benefits involved in mutual care while highlighting the numerous factors that impact the possibility and success of its application in the Italian context

    Semiclassical Propagation of Wavepackets with Real and Complex Trajectories

    Full text link
    We consider a semiclassical approximation for the time evolution of an originally gaussian wave packet in terms of complex trajectories. We also derive additional approximations replacing the complex trajectories by real ones. These yield three different semiclassical formulae involving different real trajectories. One of these formulae is Heller's thawed gaussian approximation. The other approximations are non-gaussian and may involve several trajectories determined by mixed initial-final conditions. These different formulae are tested for the cases of scattering by a hard wall, scattering by an attractive gaussian potential, and bound motion in a quartic oscillator. The formula with complex trajectories gives good results in all cases. The non-gaussian approximations with real trajectories work well in some cases, whereas the thawed gaussian works only in very simple situations.Comment: revised text, 24 pages, 6 figure

    Gravity-driven instability in a spherical Hele-Shaw cell

    Full text link
    A pair of concentric spheres separated by a small gap form a spherical Hele-Shaw cell. In this cell an interfacial instability arises when two immiscible fluids flow. We derive the equation of motion for the interface perturbation amplitudes, including both pressure and gravity drivings, using a mode coupling approach. Linear stability analysis shows that mode growth rates depend upon interface perimeter and gravitational force. Mode coupling analysis reveals the formation of fingering structures presenting a tendency toward finger tip-sharpening.Comment: 13 pages, 4 ps figures, RevTex, to appear in Physical Review

    Analytical approach to viscous fingering in a cylindrical Hele-Shaw cell

    Full text link
    We report analytical results for the development of the viscous fingering instability in a cylindrical Hele-Shaw cell of radius a and thickness b. We derive a generalized version of Darcy's law in such cylindrical background, and find it recovers the usual Darcy's law for flow in flat, rectangular cells, with corrections of higher order in b/a. We focus our interest on the influence of cell's radius of curvature on the instability characteristics. Linear and slightly nonlinear flow regimes are studied through a mode-coupling analysis. Our analytical results reveal that linear growth rates and finger competition are inhibited for increasingly larger radius of curvature. The absence of tip-splitting events in cylindrical cells is also discussed.Comment: 14 pages, 3 ps figures, Revte

    A conjugate for the Bargmann representation

    Full text link
    In the Bargmann representation of quantum mechanics, physical states are mapped into entire functions of a complex variable z*, whereas the creation and annihilation operators a^†\hat{a}^\dagger and a^\hat{a} play the role of multiplication and differentiation with respect to z*, respectively. In this paper we propose an alternative representation of quantum states, conjugate to the Bargmann representation, where the roles of a^†\hat{a}^\dagger and a^\hat{a} are reversed, much like the roles of the position and momentum operators in their respective representations. We derive expressions for the inner product that maintain the usual notion of distance between states in the Hilbert space. Applications to simple systems and to the calculation of semiclassical propagators are presented.Comment: 15 page
    • …
    corecore