6,907 research outputs found
Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players
We present the concept of fiber-flux density for locally quantifying white
matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g.,
fractional anisotropy) with fiber-flux measurements, we define new local
descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each
descriptor throughout fiber bundles allows along-tract coupling of a specific
diffusion measure with geometrical properties, such as fiber orientation and
coherence. A key step in the proposed framework is the construction of an FFDD
dissimilarity measure for sub-voxel alignment of fiber bundles, based on the
fast marching method (FMM). The obtained aligned WM tract-profiles enable
meaningful inter-subject comparisons and group-wise statistical analysis. We
demonstrate our method using two different datasets of contact sports players.
Along-tract pairwise comparison as well as group-wise analysis, with respect to
non-player healthy controls, reveal significant and spatially-consistent FFDD
anomalies. Comparing our method with along-tract FA analysis shows improved
sensitivity to subtle structural anomalies in football players over standard FA
measurements
Recommended from our members
Diurnal Refractive Error Fluctuations in Diabetic and Control Subjects
Purpose: Refractive error has been shown to fluctuate in poorly controlled diabetic patients. The purpose of this study was to measure acute diurnal fluctuations in refractive error and blood glucose levels (BGLs) in diabetic and control subjects.
Methods: Twenty-one type 2 diabetic subjects (age 56 ± 11 years), 20 type 1 diabetic subjects (age 38 ± 15 years) and 20 non-diabetic controls (age 49 ± 23 years) took part in the study. Refractive error was measured with an OPD ARK-10000 autorefractometer (Nidek) and BGLs were measured using a finger stick test (Hemocue). All measurements were taken six times during the day, between 8AM and 8PM at approximately twohourly intervals. Using power vector analysis the variability in refractive error was mapped against time of day and related to BGLs, HbA1c, diabetic status and duration of disease.
Results: Refractive error was similar between groups (p=0.96) and did not fluctuate significantly during the day in any of the three groups (ANOVA p>0.05). The mean ± SD values for BGLs during the day were 10.4 ± 4.40mM/l in DM type 2, 10.3 ± 5.30mM/l in DM type 1, and 5.4 ± 1.04mM/l in control subjects. BGLs changed significantly during the day and between groups (ANOVA p0.05). Multiple regression analysis showed that neither BGLs, HbA1c, diabetic status, nor duration of disease had a significant effect on diurnal refractive error measurements. (p>0.05).
Conclusions: Diurnal changes in BGLs do not result in significant acute refractive error fluctuations in diabetic patients, as measured with an autorefractometer.
CR: C. O’Donnell, None; H. Workman, None; S.L. Hosking, None; B. Huntjens, None.
Support: Supported by a PhD studentship from Lein Applied Diagnostics Ltd
Neutrinoless Double Beta Decay and CP Violation
We study the relation between the Majorana neutrino mass matrices and the
neutrinoless double beta decay when CP is not conserved. We give an explicit
form of the decay rate in terms of a rephasing invariant quantity and
demonstrate that in the presence of CP violation it is impossible to have
vanishing neutrinoless double beta decay in the case of two neutrino
generations (or when the third generation leptons do not mix with other leptons
and hence decouple).Comment: 9 pages, UTPT-93-1
First principles calculation of uniaxial magnetic anisotropy and magnetostriction in strained CMR films
We performed first - principles relativistic full-potential linearized
augmented plane wave calculations for strained tetragonal ferromagnetic
La(Ba)MnO with an assumed experimental structure of thin strained
tetragonal LaCaMnO (LCMO) films grown on SrTiO[001]
and LaAlO[001] substrates. The calculated uniaxial magnetic anisotropy
energy (MAE) values, are in good quantitative agreement with experiment for
LCMO films on SrTiO substrate. We also analyze the applicability of linear
magnetoelastic theory for describing the stain dependence of MAE, and estimate
magnetostriction coefficient .Comment: Talk given at APS99 Meeting, Atlanta, 199
Preparation and Use of a General Solid-Phase Intermediate to Biomimetic Scaffolds and Peptide Condensations
The Distributed Drug Discovery (D3) program develops simple, powerful, and reproducible procedures to enable the distributed synthesis of large numbers of potential drugs for neglected diseases. The synthetic protocols are solid-phase based and inspired by published work. One promising article reported that many biomimetic molecules based on diverse scaffolds with three or more sites of variable substitution can be synthesized in one or two steps from a common key aldehyde intermediate. This intermediate was prepared by the ozonolysis of a precursor functionalized at two variable sites, restricting their presence in the subsequently formed scaffolds to ozone compatible functional groups. To broaden the scope of the groups available at one of these variable sites, we developed a synthetic route to an alternative, orthogonally protected key intermediate that allows the incorporation of ozone sensitive groups after the ozonolysis step. The utility of this orthogonally protected intermediate is demonstrated in the synthesis of several representative biomimetic scaffolds containing ozonolytically labile functional groups. It is compatible with traditional Fmoc peptide chemistry, permitting it to incorporate peptide fragments for use in fragment condensations with peptides containing cysteine at the N-terminus. Overall yields for its synthesis and utilization (as many as 13 steps) indicate good conversions at each step
Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure
We study the problem of finding and characterizing subgraphs with small
\textit{bipartiteness ratio}. We give a bicriteria approximation algorithm
\verb|SwpDB| such that if there exists a subset of volume at most and
bipartiteness ratio , then for any , it finds a set
of volume at most and bipartiteness ratio at most
. By combining a truncation operation, we give a local
algorithm \verb|LocDB|, which has asymptotically the same approximation
guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness
ratio of the output set, and runs in time
, independent of the size of the
graph. Finally, we give a spectral characterization of the small dense
bipartite-like subgraphs by using the th \textit{largest} eigenvalue of the
Laplacian of the graph.Comment: 17 pages; ISAAC 201
A consistent treatment for pion form factors in space-like and time-like regions
We write down some relevant matrix elements for the scattering and decay
processes of the pion by considering a quark-meson vertex function. The pion
charge and transition form factors , , and
are extracted from these matrix elements using a relativistic
quark model on the light-front. We found that, the form factors and
in the space-like region agree well with experiment.
Furthermore, the branching ratios of all observed decay modes of the neutral
pion, that are related to the form factors and
in the time-like region, are all consistent with the data as
well. Additionally, in the time-like region, which deals with the
nonvalence contribution, is also discussed.Comment: 24 pages, 6 figures, to appear in Phys. Rev.
Non-Statistical Effects in Neutron Capture
There have been many reports of non-statistical effects in neutron-capture
measurements. However, reports of deviations of reduced-neutron-width
distributions from the expected Porter-Thomas (PT) shape largely have been
ignored. Most of these deviations have been reported for odd-A nuclides.
Because reliable spin (J) assignments have been absent for most resonances for
such nuclides, it is possible that reported deviations from PT might be due to
incorrect J assignments. We recently developed a new method for measuring spins
of neutron resonances by using the DANCE detector at LANSCE. Measurements made
with a 147Sm sample allowed us to determine spins of almost all known
resonances below 1 keV. Furthermore, analysis of these data revealed that the
reduced-neutron-width distribution was in good agreement with PT for resonances
below 350 eV, but in disagreement with PT for resonances between 350 and 700
eV. Our previous (n,alpha) measurements had revealed that the alpha strength
function also changes abruptly at this energy. There currently is no known
explanation for these two non-statistical effects. Recently, we have developed
another new method for determining the spins of neutron resonances. To
implement this technique required a small change (to record pulse-height
information for coincidence events) to a much simpler apparatus: A pair of C6D6
gamma-ray detectors which we have employed for many years to measure
neutron-capture cross sections at ORELA. Measurements with a 95Mo sample
revealed that not only does the method work very well for determining spins,
but it also makes possible parity assignments. Taken together, these new
techniques at LANSCE and ORELA could be very useful for further elucidation of
non-statistical effects.Comment: 8 pages, 3 figures, for proceedings of CGS1
Thermodynamic metrics and optimal paths
A fundamental problem in modern thermodynamics is how a molecular-scale
machine performs useful work, while operating away from thermal equilibrium
without excessive dissipation. To this end, we derive a friction tensor that
induces a Riemannian manifold on the space of thermodynamic states. Within the
linear-response regime, this metric structure controls the dissipation of
finite-time transformations, and bestows optimal protocols with many useful
properties. We discuss the connection to the existing thermodynamic length
formalism, and demonstrate the utility of this metric by solving for optimal
control parameter protocols in a simple nonequilibrium model.Comment: 5 page
B -> K^* gamma from D -> K^* l nu
The B -> K^* gamma branching fraction is predicted using heavy quark spin
symmetry at large recoil to relate the tensor and (axial-)vector form factors,
using heavy quark flavor symmetry to relate the B decay form factors to the
measured D -> K^* l nu form form factors, and extrapolating the semileptonic B
decay form factors to large recoil assuming nearest pole dominance. This
prediction agrees with data surprisingly well, and we comment on its
implications for the extraction of |Vub| from B -> rho l nu.Comment: 10 page
- …
