104 research outputs found

    Agrin Binds BMP2, BMP4 and TGFβ1

    Get PDF
    The C-terminal 95 kDa fragment of some isoforms of vertebrate agrins is sufficient to induce clustering of acetylcholine receptors but despite two decades of intense agrin research very little is known about the function of the other isoforms and the function of the larger, N-terminal part of agrins that is common to all isoforms. Since the N-terminal part of agrins contains several follistatin-domains, a domain type that is frequently implicated in binding TGFβs, we have explored the interaction of the N-terminal part of rat agrin (Agrin-Nterm) with members of the TGFβ family using surface plasmon resonance spectroscopy and reporter assays. Here we show that agrin binds BMP2, BMP4 and TGFβ1 with relatively high affinity, the KD values of the interactions calculated from SPR experiments fall in the 10−8 M–10−7 M range. In reporter assays Agrin-Nterm inhibited the activities of BMP2 and BMP4, half maximal inhibition being achieved at ∼5×10−7 M. Paradoxically, in the case of TGFβ1 Agrin N-term caused a slight increase in activity in reporter assays. Our finding that agrin binds members of the TGFβ family may have important implications for the role of these growth factors in the regulation of synaptogenesis as well as for the role of agrin isoforms that are unable to induce clustering of acetylcholine receptors. We suggest that binding of these TGFβ family members to agrin may have a dual function: agrin may serve as a reservoir for these growth factors and may also inhibit their growth promoting activity. Based on analysis of the evolutionary history of agrin we suggest that agrin's growth factor binding function is more ancient than its involvement in acetylcholine receptor clustering

    Structural Modeling and DNA Binding Autoinhibition Analysis of Ergp55, a Critical Transcription Factor in Prostate Cancer

    Get PDF
    BACKGROUND: The Ergp55 protein belongs to Ets family of transcription factor. The Ets proteins are highly conserved in their DNA binding domain and involved in various development processes and regulation of cancer metabolism. To study the structure and DNA binding autoinhibition mechanism of Ergp55 protein, we have produced full length and smaller polypeptides of Ergp55 protein in E. coli and characterized using various biophysical techniques. RESULTS: The Ergp55 polypeptides contain large amount of α-helix and random coil structures as measured by circular dichorism spectroscopy. The full length Ergp55 forms a flexible and elongated molecule as revealed by molecular modeling, dynamics simulation and structural prediction algorithms. The binding analyses of Ergp55 polypeptides with target DNA sequences of E74 and cfos promoters indicate that longer fragments of Ergp55 (beyond the Ets domain) showed the evidence of auto-inhibition. This study also revealed the parts of Ergp55 protein that mediate auto-inhibition. SIGNIFICANCE: The current study will aid in designing the compounds that stabilize the inhibited form of Ergp55 and inhibit its binding to promoter DNA. It will contribute in the development of drugs targeting Ergp55 for the prostate cancer treatment

    Inhibition of HIV virus by neutralizing Vhh attached to dual functional liposomes encapsulating dapivirine

    Get PDF
    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations

    The POM Monoclonals: A Comprehensive Set of Antibodies to Non-Overlapping Prion Protein Epitopes

    Get PDF
    PrPSc, a misfolded and aggregated form of the cellular prion protein PrPC, is the only defined constituent of the transmissible agent causing prion diseases. Expression of PrPC in the host organism is necessary for prion replication and for prion neurotoxicity. Understanding prion diseases necessitates detailed structural insights into PrPC and PrPSc. Towards this goal, we have developed a comprehensive collection of monoclonal antibodies denoted POM1 to POM19 and directed against many different epitopes of mouse PrPC. Three epitopes are located within the N-terminal octarepeat region, one is situated within the central unstructured region, and four epitopes are discontinuous within the globular C-proximal domain of PrPC. Some of these antibodies recognize epitopes that are resilient to protease digestion in PrPSc. Other antibodies immunoprecipitate PrPC, but not PrPSc. A third group was found to immunoprecipitate both PrP isoforms. Some of the latter antibodies could be blocked with epitope-mimicking peptides, and incubation with an excess of these peptides allowed for immunochromatography of PrPC and PrPSc. Amino-proximal antibodies were found to react with repetitive PrPC epitopes, thereby vastly increasing their avidity. We have also created functional single-chain miniantibodies from selected POMs, which retained the binding characteristics despite their low molecular mass. The POM collection, thus, represents a unique set of reagents allowing for studies with a variety of techniques, including western blotting, ELISA, immunoprecipitation, conformation-dependent immunoassays, and plasmon surface plasmon resonance-based assays

    The Free Energy Landscape of Small Molecule Unbinding

    Get PDF
    The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding

    Examining the Interactome of Huperzine A by Magnetic Biopanning

    Get PDF
    Huperzine A is a bioactive compound derived from traditional Chinese medicine plant Qian Ceng Ta (Huperzia serrata), and was found to have multiple neuroprotective effects. In addition to being a potent acetylcholinesterase inhibitor, it was thought to act through other mechanisms such as antioxidation, antiapoptosis, etc. However, the molecular targets involved with these mechanisms were not identified. In this study, we attempted to exam the interactome of Huperzine A using a cDNA phage display library and also mammalian brain tissue extracts. The drugs were chemically linked on the surface of magnetic particles and the interactive phages or proteins were collected and analyzed. Among the various cDNA expressing phages selected, one was identified to encode the mitochondria NADH dehydrogenase subunit 1. Specific bindings between the drug and the target phages and target proteins were confirmed. Another enriched phage clone was identified as mitochondria ATP synthase, which was also panned out from the proteome of mouse brain tissue lysate. These data indicated the possible involvement of mitochondrial respiratory chain matrix enzymes in Huperzine A's pharmacological effects. Such involvement had been suggested by previous studies based on enzyme activity changes. Our data supported the new mechanism. Overall we demonstrated the feasibility of using magnetic biopanning as a simple and viable method for investigating the complex molecular mechanisms of bioactive molecules

    The Prevalence of Trachomatous Trichiasis in People Aged 15 Years and Over in Six Evaluation Units of Gaoual, Labé, Dalaba and Beyla Districts, Guinea.

    Get PDF
    PURPOSE: Trachoma is a public health problem in 42 countries. Inflammation associated with repeated ocular infection with Chlamydia trachomatis can cause the eyelid to scar and turn inwards, resulting in the eyelashes rubbing against the eyeball, known as trachomatous trichiasis (TT). In Guinea, baseline surveys conducted in 2013 reported inflammatory trachoma prevalences below the World Health Organization (WHO) threshold for elimination, but TT prevalences above threshold. Given this epidemiological context and time since baseline survey, TT-only surveys were conducted in selected districts to determine current TT prevalence. The results of this study provide critical data for assessing Guinea's achievement of trachoma elimination targets. METHODS: Four health districts, consisting of six evaluation units (EU), were surveyed. In each EU, field teams visited 29 clusters with a minimum 30 households included in each. Participants aged≥15 years were examined by certified graders trained to identify TT and determine whether management had been offered. RESULTS: A total of 22,476 people were examined, with 48 TT cases across the six EUs identified. Five of six EUs had an age-and-gender adjusted TT-prevalence unknown to the health system less than 0.2%, whereas one EU, Beyla 2, had an adjusted TT prevalence of 0.24%. CONCLUSION: These TT-only surveys, along with findings from other trachoma interventions, suggest that Guinea is close to achieving elimination of trachoma as a public health problem. This study demonstrates the value of undertaking TT-only surveys in settings where baseline surveys indicated active trachoma prevalences below WHO elimination threshold, but TT prevalences above it

    Properties, production, and applications of camelid single-domain antibody fragments

    Get PDF
    Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications

    Tropical Data: Approach and Methodology as Applied to Trachoma Prevalence Surveys

    Get PDF
    PURPOSE: Population-based prevalence surveys are essential for decision-making on interventions to achieve trachoma elimination as a public health problem. This paper outlines the methodologies of Tropical Data, which supports work to undertake those surveys. METHODS: Tropical Data is a consortium of partners that supports health ministries worldwide to conduct globally standardised prevalence surveys that conform to World Health Organization recommendations. Founding principles are health ministry ownership, partnership and collaboration, and quality assurance and quality control at every step of the survey process. Support covers survey planning, survey design, training, electronic data collection and fieldwork, and data management, analysis and dissemination. Methods are adapted to meet local context and needs. Customisations, operational research and integration of other diseases into routine trachoma surveys have also been supported. RESULTS: Between 29th February 2016 and 24th April 2023, 3373 trachoma surveys across 50 countries have been supported, resulting in 10,818,502 people being examined for trachoma. CONCLUSION: This health ministry-led, standardised approach, with support from the start to the end of the survey process, has helped all trachoma elimination stakeholders to know where interventions are needed, where interventions can be stopped, and when elimination as a public health problem has been achieved. Flexibility to meet specific country contexts, adaptation to changes in global guidance and adjustments in response to user feedback have facilitated innovation in evidence-based methodologies, and supported health ministries to strive for global disease control targets

    Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment

    Full text link
    By constructing Fv and single-chain Fv (scFv) fragments of antibodies, the variable domains are taken out of their natural context in the Fab fragment, where they are associated with the constant domains of the light (CL) and heavy chain (CH1). As a consequence, all residues of the former variable/constant domain interface become solvent exposed. In an analysis of 30 non-redundant Fab structures it was found that at the former variable/constant domain interface of the Fv fragment the frequency of exposed hydrophobic residues is much higher than in the rest of the Fv fragment surface. We investigated the importance of these residues for different properties such as folding in vivo and in vitro, thermodynamic stability, solubility of the native protein and antigen affinity. The experimental model system was the scFv fragment of the anti-fluorescein antibody 4-4-20, of which only 2% is native when expressed in the periplasm of Escherichia coli. To improve its in vivo folding, a mutagenesis study of three newly exposed interfacial residues in various combinations was carried out. The replacement of one of the residues (V84D in VH) led to a 25-fold increase of the functional periplasmic expression yield of the scFv fragment of the antibody 4-4-20. With the purified scFv fragment it was shown that the thermodynamic stability and the antigen binding constant are not influenced by these mutations, but the rate of the thermally induced aggregation reaction is decreased. Only a minor effect on the solubility of the native protein was observed, demonstrating that the mutations prevent aggregation during folding and not of the native protein. Since the construction of all scFv fragments leads to the exposure of these residues at the former variable/constant domain interface, this strategy should be generally applicable for improving the in vivo folding of scFv fragments and, by analogy, also the in vivo folding of other engineered protein domain
    corecore