326 research outputs found

    A Shell of Thermal X-ray Emission Associated with the Young Crab-like Remnant 3C58

    Full text link
    Deep X-ray imaging spectroscopy of the bright pulsar wind nebula 3C58 confirms the existence of an embedded thermal X-ray shell surrounding the pulsar PSR J0205+6449. Radially resolved spectra obtained with the XMM-Newton telescope are well-characterized by a power-law model with the addition of a soft thermal emission component in varying proportions. These fits reproduce the well-studied increase in the spectral index with radius attributed to synchrotron burn-off of high energy electrons. Most interestingly, a radially resolved thermal component is shown to map out a shell-like structure ~6' in diameter. The presence of a strong emission line corresponding to the Ne IX He-like transition requires an overabundance of ~3 x [Ne/Ne(sun)] in the Raymond-Smith plasma model. The best-fit temperature kT ~ 0.23 keV is essentially independent of radius for the derived column density of N_H = (4.2 +/- 0.1)E21 per cm squared. Our result suggests that thermal shells can be obscured in the early evolution of a supernova remnant by non-thermal pulsar wind nebulae emission; the luminosity of the 3C58 shell is more than an order of magnitude below the upper limit on a similar shell in the Crab Nebula. We find the shell centroid to be offset from the pulsar location. If this neutron star has a velocity similar to that of the Crab pulsar, we derive an age of 3700 yr and a velocity vector aligned with the long axis of the PWN. The shell parameters and pulsar offset add to the accumulating evidence that 3C58 is not the remnant of the supernova of CE 1181.Comment: 7 pages, 8 figures, 2 tables, Latex emulateapj style. To appear in the Astrophysical Journa

    A Frictional Cooling Demonstration Experiment with Protons

    Full text link
    Muon cooling is the main technological obstacle in the building of a muon collider. A muon cooling scheme based on Frictional Cooling holds promise in overcoming this obstacle. An experiment designed to demonstrate the Frictional Cooling concept using protons was undertaken. Although the results were inconclusive in the observation of cooling, the data allowed for the qualification of detailed simulations which are used to simulate the performance of a muon collider.Comment: 24 Pages 16 figures 2 table

    Calibrating photometric redshifts with intensity mapping observations

    Get PDF
    Imaging surveys of galaxies will have a high number density and angular resolution yet a poor redshift precision. Intensity maps of neutral hydrogen (HI) will have accurate redshift resolution yet will not resolve individual sources. Using this complementarity, we show how the clustering redshifts approach, proposed for spectroscopic surveys can also be used in combination with intensity mapping observations to calibrate the redshift distribution of galaxies in an imaging survey and, as a result, reduce uncertainties in photometric redshift measurements. We show how the intensity mapping surveys to be carried out with the MeerKAT, HIRAX and SKA instruments can improve photometric redshift uncertainties to well below the requirements of DES and LSST. The effectiveness of this method as a function of instrumental parameters, foreground subtraction and other potential systematic errors is discussed in detail.Scopu

    Finding the Center of Mass of a Soft Spring

    Full text link
    This article shows how to use calculus to find the center of mass position of a soft cylindrical helical spring that is suspended vertically. The spring is non-uniformly stretched by the action of gravity. A general expression for the vertical position of the center of mass is obtained.Comment: LaTeX, 7 pages, 2 figures. Minor changes to agree with published versio

    First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the CMB. QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of data were collected, first with the 19-element 43GHz array (3458hours) and then with the 90-element 95GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ~1000deg^2. This paper reports initial results from the 43GHz receiver which has an array sensitivity to CMB fluctuations of 69uK sqrt(s). The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB and EB power spectra in the multipole range ell=25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3sigma significance, the E-mode spectrum is consistent with the LCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r=0.35+1.06-0.87. The combination of a new time-stream double-demodulation technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r=0.1Comment: 19 pages, 14 figures, higher quality figures are available at http://quiet.uchicago.edu/results/index.html; Fixed a typo and corrected statistical error values used as a reference in Figure 14, showing our systematic uncertainties (unchanged) vs. multipole; Revision to ApJ accepted version, this paper should be cited as "QUIET Collaboration et al. (2011)

    Precision Epoch of Reionization studies with next-generation CMB experiments

    Get PDF
    Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near =1500\ell=1500 in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range 300<<3000300<\ell<3000 with simulated temperature data from the full Planck mission in the low and intermediate \ell region, 2<<20002<\ell<2000. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than 1%1\% accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a 15σ15 \sigma detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at >1500\ell>1500, leading to a measurement of the amplitude of matter density fluctuations, σ8\sigma_8, at 1%1\% precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with σ(zre)=1.1\sigma(z_{\rm re})=1.1 and σ(Δzre)=0.2\sigma(\Delta z_{\rm re})=0.2. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.Comment: 10 pages, 10 figure

    Survey strategy optimization for the Atacama Cosmology Telescope

    Get PDF
    In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24 hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.Comment: 14 Pages, 9 Figures, 4 Table
    corecore