1,837 research outputs found

    Final spin of a coalescing black-hole binary: an Effective-One-Body approach

    Full text link
    We update the analytical estimate of the final spin of a coalescing black-hole binary derived within the Effective-One-Body (EOB) approach. We consider unequal-mass non-spinning black-hole binaries. It is found that a more complete account of relevant physical effects (higher post-Newtonian accuracy, ringdown losses) allows the {\it analytical} EOB estimate to `converge towards' the recently obtained {\it numerical} results within 2%. This agreement illustrates the ability of the EOB approach to capture the essential physics of coalescing black-hole binaries. Our analytical approach allows one to estimate the final spin of the black hole formed by coalescing binaries in a mass range (ν=m1m2/(m1+m2)2<0.16\nu=m_1m_2/(m_1+m_2)^2 < 0.16 ) which is not presently covered by numerical simulations.Comment: 8 pages, two figures. To appear in Phys. Rev.

    Comparing Effective-One-Body gravitational waveforms to accurate numerical data

    Full text link
    We continue the program of constructing, within the Effective-One-Body (EOB) approach, high accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling and coalescing binary black holes (BHs). We present the comparable-mass version of a new, resummed 3PN-accurate EOB quadrupolar waveform recently introduced in the small-mass-ratio limit. We compare the phase and the amplitude of this waveform to the recently published results of a high-accuracy numerical relativity (NR) simulation of 15 orbits of an inspiralling equal-mass binary BHs system performed by the Caltech-Cornell group. We find a remarkable agreement, both in phase and in amplitude, between the new EOB waveform and the published numerical data. More precisely: (i) in the gravitational wave (GW) frequency domain Mω<0.08M\omega <0.08 where the phase of one of the non-resummed ``Taylor approximant'' (T4) waveform matches well with the numerical relativity one, we find that the EOB phase fares as well, while (ii) for higher GW frequencies, 0.08<Mω≲0.140.08<M\omega\lesssim 0.14, where the TaylorT4 approximant starts to significantly diverge from the NR phase, we show that the EOB phase continues to match well the NR one. We further propose various methods of tuning the two inspiral flexibility parameters, a5a_5 and vpolev_{\rm pole}, of the EOB waveform so as to ``best fit'' EOB predictions to numerical data. We find that the maximal dephasing between EOB and NR can then be reduced below 10−310^{-3} GW cycles over the entire span (30 GW cycles) of the simulation. Our resummed EOB amplitude agrees much better with the NR one than any of the previously considered non-resummed, post-Newtonian one.Comment: 15 pages, 7 figures, submitted to Phys. Rev. D. Revised version. Figs. 2-7 improved. Slight changes in a few numbers. One reference adde

    Binary black hole coalescence in the large-mass-ratio limit: the hyperboloidal layer method and waveforms at null infinity

    Get PDF
    We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large mass ratio limit. We consider the transition from the quasi-adiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic radiation reaction. To compute the waveforms we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity in the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, ν=10−2,−3,−4,−5,−6\nu=10^{-2,-3,-4,-5,-6}, that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the gravitational recoil imparted to the merger remnant by the gravitational wave emission. As a self consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented.Comment: 22 pages, 18 figures. Typos corrected. To appear in Phys. Rev.

    Inactivation of Mandelate Racemase by 3-Hydroxypyruvate Reveals a Potential Mechanistic Link between Enzyme Superfamilies

    Get PDF
    Mandelate racemase (MR), a member of the enolase superfamily, catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate. Several α-keto acids are modest competitive inhibitors of MR [e.g., mesoxalate (Ki = 1.8 ± 0.3 mM) and 3-fluoropyruvate (Ki = 1.3 ± 0.1 mM)], but, surprisingly, 3-hydroxypyruvate (3-HP) is an irreversible, time-dependent inhibitor (kinact/KI = 83 ± 8 M–1 s–1). Protection from inactivation by the competitive inhibitor benzohydroxamate, trypsinolysis and electrospray ionization tandem mass spectrometry analyses, and X-ray crystallographic studies reveal that 3-HP undergoes Schiff-base formation with Lys 166 at the active site, followed by formation of an aldehyde/enol(ate) adduct. Such a reaction is unprecedented in the enolase superfamily and may be a relic of an activity possessed by a promiscuous progenitor enzyme. The ability of MR to form and deprotonate a Schiff-base intermediate furnishes a previously unrecognized mechanistic link to other α/β-barrel enzymes utilizing Schiff-base chemistry and is in accord with the sequence- and structure-based hypothesis that members of the metal-dependent enolase superfamily and the Schiff-base-forming N-acetylneuraminate lyase superfamily and aldolases share a common ancestor

    Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models

    Full text link
    Binary neutron-star systems represent one of the most promising sources of gravitational waves. In order to be able to extract important information, notably about the equation of state of matter at nuclear density, it is necessary to have in hands an accurate analytical model of the expected waveforms. Following our recent work, we here analyze more in detail two general-relativistic simulations spanning about 20 gravitational-wave cycles of the inspiral of equal-mass binary neutron stars with different compactnesses, and compare them with a tidal extension of the effective-one-body (EOB) analytical model. The latter tidally extended EOB model is analytically complete up to the 1.5 post-Newtonian level, and contains an analytically undetermined parameter representing a higher-order amplification of tidal effects. We find that, by calibrating this single parameter, the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, analytical models (either EOB, or Taylor-T4) that do not incorporate such a higher-order amplification of tidal effects, build a dephasing with respect to the numerical waveforms of several radians.Comment: 25 pages, 17 figs. Matched published versio

    Binary black hole merger in the extreme-mass-ratio limit: a multipolar analysis

    Get PDF
    Building up on previous work, we present a new calculation of the gravitational wave (GW) emission generated during the transition from quasi-circular inspiral to plunge, merger and ringdown by a binary system of nonspinning black holes, of masses m1m_1 and m2m_2, in the extreme mass ratio limit, m1m2≪(m1+m2)2m_1 m_2\ll(m_1+m_2)^2. The relative dynamics of the system is computed {\it without making any adiabatic approximation} by using an effective one body (EOB) description, namely by representing the binary by an effective particle of mass μ=m1m2/(m1+m2)\mu=m_1 m_2/(m_1+m_2) moving in a (quasi-)Schwarzschild background of mass M=m1+m2M=m_1+m_2 and submitted to an \O(\nu) 5PN-resummed analytical radiation reaction force, with ν=μ/M\nu=\mu/M. The gravitational wave emission is calculated via a multipolar Regge-Wheeler-Zerilli type perturbative approach (valid in the limit ν≪1\nu\ll 1). We consider three mass ratios, ν=10−2,10−3,10−4\nu={10^{-2},10^{-3},10^{-4}},and we compute the multipolar waveform up to ℓ=8\ell=8. We estimate energy and angular momentum losses during the quasi-universal and quasi-geodesic part of the plunge phase and we analyze the structure of the ringdown. We calculate the gravitational recoil, or "kick", imparted to the merger remnant by the gravitational wave emission and we emphasize the importance of higher multipoles to get a final value of the recoil v/(cν2)=0.0446v/(c\nu^2)=0.0446. We finally show that there is an {\it excellent fractional agreement} (∼10−3\sim 10^{-3}) (even during the plunge) between the 5PN EOB analytically-resummed radiation reaction flux and the numerically computed gravitational wave angular momentum flux. This is a further confirmation of the aptitude of the EOB formalism to accurately model extreme-mass-ratio inspirals, as needed for the future space-based LISA gravitational wave detector.Comment: 20 pages, 12 figures. Version published in Phys. Rev.

    Minimum Second Moment Estimation with Simultaneous Equation Systems

    Get PDF

    A Measure of Correlation for Simultaneous Equation Systems

    Get PDF
    • …
    corecore