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1. Introduction

An important function of a simultaneous equations model is to help
in predicting the values of endogenous variables given the values of the
exogenous variables, In fact prediction érrors are good indicators of the
performance of such a model in practice. Asymptotic variance-covariance
matrix of forecasts has been worked out by Hooper and Zellner (1961) and
Goldberger, Nagar and Odeh (1961). The approach adopted by Hooper and Zellner
was that of obtaining forecasts from unrestricted reduced form and Goldberger,
Nagar and Odeh obtain forecasts from restricted (or derived) reduced form.
Relative merits of the two methods have been investigated by several authors
including Mosbaek and Wold (1969). In this paper we shall investigate proper-
ties of forecasts obtained according to partially restricted reduced form.
This procedure was originally proposed by Amemiya (1966) and later analyzed
by Kakwani and Court (1972),

The specification of the linear structural model and the reduced form
has been given in Section 2 and the method of partially restricted reduced
form has been spelt out in Section 3. 1In Section 4 we analyze the exact bias
and mean squared error of forecast obtained according to the partially re-
stricted reduced form when there are only two endogenous variables in the given
structural equation. We also obtain the asymptotic approximations to the bias

and mean squared error so obtained. Section 5 gives the proofs of the theorems.
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2. Linear Structural System and its Reduced Form

Let us write the complete equation system in M linear structural
equations in M endogenous and K exogenous variables as
(2.1 YWI"+XB = U

where

(2.2) Yw

are matrices of observations on M endogenous and K exogenous variables,

respectively;

Y11 **° Y
(2.3) ' = : . and B
M1 v

are coefficient matrices, and

u.l(]) eoe uM(‘I)

(2.4) U

u1(T) uM(T)
is the TxM matrix of structural disturbances.

We assume that

i) the matrix X of observations on exogenous variables

is purely non-stochastic and fixed in repeated samples,

and thus there are no lagged endogenous variables

present in the system,

ii) rank X =K < T, and

(2.5) lim (1/T) XX = &

T - XX

is non-singular and positive definite.
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iii) the T rows of U are independent random drawings from

an M-variate normal population with

(2.6) EU = 0 and (1/T)EUU = &

where & is positive definite.

The reduced form of the structural system (2.1) may be written as

(2.7) Y =XI +V , where I = Br"!
w w w

and V_ = ur-!
w w

provided I' is a non-singular matrix.
It follows that the T rows of 6@ are also M-dimensional normal with

T o= el e = =1 -1
(2.8) EVW 0 and (1/T)EVWVW Q r =T

where () is then a positive definite matrix.

3. Estimation of the Reduced Form

The reduced form coefficients may be estimated either by applying
ordinary least squares directly to (2.7), or, by first estimating the struc-
tural equations by a consistent method and then deriving the reduced form
coefficient estimates. In the former case we have

1

(3.1 = @xx'x'Y
W w

and in the latter

(3.2) i = -8 .

w

The former procedure may be called unrestricted reduced form estimationm,

and the latter restricted reduced form estimation. The forecasts obtained

according to the two methods have been analyzed by Hooper and Zellner (1961)
and Goldberger, Nagar and Odeh (1961), respectively. The comparative merits
of the two procedures have been evaluated by several authors. The most
detailed evidence comes from the study of Mosbaek and Wold (1969). The

main difficulty of the restricted reduced form estimator is that to estimate
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one single reduced form equation one must obtain estimates of coefficients

in all structural equations. This is a cumbersome procedure besides being

highly sensitive to errors of specification in different structural equations.
Amemiya (1966) and Kakwani and Court (1972) have proposed the fol-

lowing method which may be called partially restricted reduced form estimation.
Let us consider one single structural equation of the complete

system (2.1). After omitting those variables from this equation which enter

with zero coefficients and normalizing the coefficients we may write this

equation as

(3.3) y =Yy+X]B+u,

where y is a Tx 1 vector of observations on the left hand endogenous variable,

Y and X1 are Txm and T){K] matrices of observations on the right hand

endogenous and exogenous variables, respectively. We have m + 1 <M and

K] < K. Further, y and B are mx 1 and K11<1 coefficient vectors and u is

the Tx 1 vector of structural disturbances.

The reduced form corresponding to y and Y may be written as

(3.4) y = X1n""+xzﬂ+v = X'::*j+v,
and

(3.5) Y = XM+ X,0+V = x(g*>+v,
where

(3.6) X = (X] X2)

X. being the TxK, matrix of observations on K2 exogenous variables excluded

2 2

from (3.3) and X] is T}cK] matrix of K] exogenous variables included in

(3.3); K= K1 + K2. ~* 1 are reduced form coefficient vectors in (3.4)

and I*, [ are coefficient matrices in (3.5). The identifiability of (3.3)

requires



(3.7) ™ = Fy+p

(3.8) m = Iy
or

rr*) (IT* 1 Y
(3.9) = )
(ﬂ- \\H 0 B

4

where 1 is K] xK] identity matrix and O is null matrix of size szl(] .

The partially restricted reduced form estimator of the coefficient

3
vector (TT ), in (3.4), is then defined as

1 ;
(3.10) (2*)= 7V x4y ) S
0

*
where (X 'X) -1 X is the ordinary least squares estimator of(ﬁ)is (3.5)
and
G e= @M YNy, b= ®x) Xy -Yo)
are the two-stage least squares estimators of parameters y and B in (3.3),
respectively;
(3.12) N = X®® ' g’ - X, (X{X,) . X,

is Tx T idempotent symmetric matrix such that

(3.13) rank N = tr N=K - K =K2.

It should be noted that the estimator in (3.10) coincides with the

unrestricted reduced form estimator in case the structural equation (3.3)

- is just identified, i.e., K =m + Kl :

‘H‘v\. -
(3.14) (E = &% xYy

7



4, Analysis of Partially Restricted Reduced Form Forecast Errors in Case (3.3)

has only Two Endogenous Variables

If there is only one endogenous variable on the right hand side of

(3.3), i.e., ¥ = Y1 is a column vector and y is a scalar coefficient, then we

have

4.1) y = Yy.l +X]6+u,

and the reduced form corresponding to y and may be written as
y, may

*
- * =x( T
(4.2) y X]n +X21T+V '*\n/'+v’
_ _ 7o ~
(4.3) v, = x1n=;+x2n]+v] = x\n1 v
1

The partially restricted reduced form estimator is

% Ry

(4.4) (f\,

1
1 oo (b) .
If

(4.5) x; = (x]T oo xKT)

is the vector of observations, in period of prediction t = T, on the K

exogenous variables, then the forecast value of the left hand endogenous

variable in (4.1) is

~k
-
(4.6) yT-xT(\n/o
Since
_ e (T
4.7) Y. T X o + V.

according to the reduced form (4.2), and its estimated counterpart is

SN
- o N .
(4.8) Y, T %, <.ﬁ /»+ Vo
we obtain
(4.9) y_ -y = -%
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and

Y
(4.10) A A

We shall prove the following theorems:

Theorem 1. If the coefficient vector (2%) in (4.2) has been estimated

according to the partially restricted reduced form procedure indicated in

(4.4), then under the Assumptions i), ii) and iii) stated in Section 2

(4.11) E & = v and

A ‘G l
(4.12) Ef = e (8 f12 + > f01)ﬂ

where K2 > 1 and

(4.13) 8 = (/Dy/Ny,,

is a_certain parameter of non-centrality, ;} = Ey1 and f12’ f01 have been

obtained from

r<72+ a> K, o)
(4.14) fe =~ 1 (—2-+ a; 5 +¢; 8)

by specifying a =1, ¢ =2 and a =0, ¢ = 1, respectively; and ]F](

is a confluent hypergeometric function.

Using (4.9) and (4.10) we have

li

'
=
<>

(4.15)  E(f, -y) .

1]
L]

and if we partition x_ as

X
4.16) x = ( *>

T \X**

so that x, is the column vector of observations on variables in X] in the
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period t = T of prediction and similarly X,y 18 the column vector of

observations on variables in X2 in the period t = T, then the following re-

sult is obtained.

Theorem 2. Under the Assumptions i), ii) and iii) stated in Section 2, the

the exact bias of the partially restricted reduced form forecast on the

left hand endogenous variable in (4.1) is given by

(47 EGF_-y) = x/ E(7-m

-9 7
e (8 f.|2+§ fO'l -1) X*’*Tr,

where KZ > 1.

Corollary. For © large and positive an asymptotic approximation to the

bias of the partially restricted reduced form forecast is given by

1-K,
(4.18)  E(J -y ~ 5 g xR, T, Ky >

where terms of lower order than 1/6 have been omitted.

Theorem 3. Under the Assumptions i), ii) and iii) stated in Section 2, the

exact mean squared error of the partially restricted reduced form forecast

on_the left hand endogenous variable y in (4.1) is given by

2

A _ ’ ’
(4.19)  E@ -y)" = 1+ xx, +x,Dx,

where x,, x,, are as defined in (4.16), K2 > 2, and

(4.20) D=EMm-mH-m’
K
_ ol 2.2 2  1.,.2 ’ ’
-[(29 +yO)I+(1+—--4-l-zey)rr]ﬂ.I +y9‘rr.|1'r
‘ -8 1 2.2 : -9
+y9rrrr]]e f13+(29 +yB)1'r.|111 e f24
'Iv, KZ 1 2 1 2, -9
+[(§+—4+§-9y)1+5nﬂ]e f02

- 2e'°e £19 ! - e'efo] '+ nn’,



3;

f.|3, f24 etc. having been obtained from (4.14) by putting a = 1, ¢
=2, c=4, etc.
Since, for large and positive value of 6, the asymptotic expansion of
the confluent hypergeometric function is given by1

K K

2 2 .
.2y F(Fra Fhe 9
K, 3 | )
r. 2 te, ee (c -a) <} 1
T 8
2

. (c-a)(c-a+1)<’l -522- - a)(‘l - I-<2—2- -a+ 1)

2 . e

NI"

and fac is as defined in (4.14) we arrive at the following result.

Corollary. For large values of 6, and K, > 2, the asymptotic approximation

2

to the mean squared error of forecast is given by

(4.22) E(}';T -y.) =

' 2
1+x_kx*+y X pne Xpone

2 2

1+y 2. ., 1-v ’ ’
—— - K,v ) X, X+ 7 X T T x}w‘,]e

+ [(

where terms of lower order than %have been neglected.

5. Proof of Theorems 1, 2 and 3

The derivation of proof of the theorems stated in the preceding section

is considerably simplified if we transform the original structural system (2.1)

1cf. Slater (1960).
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so that the covariance matrix of the reduced form disturbances is unity.

Such a transformation of the structural system is always possible and,

therefore, there is no loss of generality. Then we assume that Q = I;

and hence
(5.1) Ev = Ev] =0 and
(5.2) Evv’ = Ev,v! =1 and Evv' = 0,

11 1
where I is TxXT unit matrix and O is TxT zero matrix.
Further, we assume that

(5.3) X = 1.

5.1. Proof of Theorem 1.

From the equation (4.4) we have

(5.4) ™ = X]' y;e +b
(5.5) fi = ‘XZ' v, ¢
where

y{Ny
(5.6) c = — and b = X/(y-cy,)),

y; Ny

1 1

_ ’ ’ =
Substituting for b in (5.4) from (5.6) we get

(5.8) 7 = x'y

1

and, therefore,

(5.9) EAR¥

|
»3
d\
~
=1
«
~
]
>
- -
~
>
-
:13('
+
>3
N
3

because X'X] = I and X'X. = 0.
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Let us now consider

, .
_ <y1Ny\ ’
y-l =

A ' 3
(5.10) T = sz }’INY /FXZ y]
1 1
’ ’ ’
X, X z.z
- (R S, - (U2,
y]XZXZy]‘ 1 ~2y2, s

where we write

= w! — g
(5.11) z X2y and z ‘Xzy].

It should be noted that the elements of z and z, are independently

normally distributed with

’ z = Ez X, (Ey) X, ¥ xz(x1 ™ + X,m =m
(5.12) 1 - , ,— , .
zy = E 2, = XZ(E y]) = X2 vy = XZ(X1 ™ + X2 nl) =
and
E(z-;)(z-;)' = E(z -;)(z -;)' = I and
( 1 1 1 1
(5.13) 3

‘E(z-?)(z1-21)' =0 ,

I being K2 sz unit matrix and 0 is l(zxK2 zero matrix,

If we write z,, and z, for the ith clements of z. and z ,» respectively,
1i i 1

then the jth element of the vector in (5.10) is given by

2
Z1%11%
A - 1=
2
z2
i-j'l 1i
Hence
K
Z7q . 2 Z,. 2
A 1j 11 “1j
5.15 E @, = - |Ez, + z Ef —= Ez
( ) i K 3 i#j=1 K i’
2 2 ] 2 2
‘E z i1 271
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and using results obtained in (A.4) and (A.5) of the appendix we arrive at

the result stated in (4.12).

5.2. Proof of Theorem 2

The proof-of the Theorem 2 has already been outlined in the text
preceding the statement of the theorem. Further, the result in corollary to
the Theorem 2 follows in a straight forward manner by using asymptotic

expansion of the relevant confluent hypergeometric functions.

5.3. Proof of Theorem 3

Using (4.9) and (4.10) the mean squared error of forecast on the left

hand endogenous variable in (4.1) is given by

(5.16) E(yT - yT) = EvT
* *
I ’?*'"\1,: i , AT TN
- Lv"r A -n/) Vr x’rk\ﬁ - J i
Since
(>
(5.17) X_ =
T **/’

according to (4.16), we have

2

(5.18)  E@, -y.)

1+ x] E@* - o) (F - 1) x,
’ ~ % X\ 7.0 ’
+ 2 x, E(™ - m)(7T - ™ Xy

' ~ A 4
+ X, E(T - m)(7-m Xyu

because due to the assumption of temporal independence of disturbances and

zero mean of disturbances other terms on the right hand side vanish, and
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Let us now observe that
(5.19)  E(fi* - @) (& - %)/ = E & &' -
because EA* = m* as shown in (4.11), and using (5.8) we have

(5.20) EF&’ = E Xl'yy'X] = x{ (Eyy " X,

x]’(1+§§’)x1 = I+’

because E(y -y)(y-y)'=1I, y=Ey and XX = I. Therefore,

(5.21) E(f - a%) @ -’ =1,

and
(5.22)  x/E(#* - o) - x, =x/x, .
Next let us consider
(5.23) E@G* -y -m’ = EA*R - ¥ (ER') ,

and note that

(5.24) = X]'y and fi=c¢ Xz'y]

from (5.8) and (5.5), respectively; and
7 /
V1 X, %,

(5.25) c = T-X—,-— .
Y1%2%2 77

Therefore, A* is independently distributed of #, as X{X2 = 0. Hence

L4

(5.26) EAA* ' = EA*EAR' = n* EA
because E ##~ = m™, and

(5.27) E(/”

'TT*)(ﬁ"’TT)’=Oo
Finally, let us obtain the value of
(5.28) E(A-m)(F-m' = EFR’ - (Ef)n’ - m(@ER) '+ nn’

where Eft is already given in (4.12). We can write
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ANl 2 ’ ’
(5.29) i’ =c x2 )(2ylylx2

vhere z, = Xz'y] and z = Xz'y .

I1f we write zu, zg (i=l,...,K2) for the ith elements of z.| and z,
respectively; then the diagonal element in the kth row and kth column of

fA’ is

214 'IJ i _]
(5.30)

and the off-diagonal element in the kth row and the £tP column is

%14 'Ij 2y j
(5.31) 29k %140

where

(5.32) W= Z z.

is a non-central xz variate with K2 degrees of freedom and

-2

']z]i

=1
(5.33) 8 =3

is the parameter of non-centrality, 7:11 = E Zyg*

It can be verified easily that

=~
~

1 2 ..
Z_ 2. = 9y and 7 ]ziz]i=y9.

i=1 1 / i

™
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Let us now evaluate the mathematical expectation of the diagonal
element (5.30) in the first instance.

We will distinguish five cases as below:

Cases Mathematical Expectation of (5.30)
.. 4 , 2 2
] i=j=k E(z]k/W)Ezk
K
_ 2 2
i=3 but # k iE1E(Z'|i ]k/W)Ez
Fk
KZ
i=k but # j J§1E(z]k ]/W)EzkEzj
#k
KZ
j=k but #1i ]E]E(ZT ]k/W)EziEzk
#k
K2
it ji#k L E(z /W)EzEz
i#jfk

Mathematical expectations required above are given in the Appendix (A.6)

to (A.9); and we note that

]
N
v
=]
(=¥
<
N

1]
=1

1
~
=1

N
~

I

—

@]

2]

(5.35) Ezi

]
—t
+
N
.

2
E z; =
Therefore, the mathematical expectation of the diagonal term given

in (5.30) is
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K
(5.36) Z‘. E(—i—u—>Ezz =

i,j=1 w
\
Fd o+ 292)+(1+K—2—+'—92)2+2 0 le ¢
L\2 Y 4 T2 YY) 2 Vzl k_se 13
1 -9
+[ 9+Ye]1k f24
ri %

2 1-27 -6
tgt gty 8D + g7 e g, -
Next let us consider the mathematical expectation of the off-diagomal

element given in (5.31).

We will distinguish the following cases:

Cases Mathematical Expectation of (5.31)
i=j=k but # 4 iE(z?kz”‘/WZ) Ezi
i=j=4 but #k E(z?z z1k/w2) Ezi

K2 )
i=3 but # k,& T E(z /W)Ez
o =1 11 %1k %14
#k, 4
K
i=k =1 K, but j#k,4 22 E(z2 Z,.Z /Wz)Ez Ez
L=k 3210000k, but 37k, j=1 1k %15 %14 ko7
#k,4
K2 )
i=4, §=1,...,K, but j £k, ¢ _21 E(zw 13 2, /W) EzyEz,
‘ J=
#k, 4
Kz )
§=k, i=1,..0,K, but i#Kk,4 R (CHE m/w )Ez Ez,
#k, 4
KZ 2
j=2, i=1,...,K2 but i#k,4 z E(z 23y 1k/W)Ez Ez,
i 1i=1
#k, 4
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Cases Mathematical Expectation of (5.31)
i=k, j=4 but i#j E(z ?k .M/W)EzkEzz
i=4, j=k but i# j E(ZM .lk/W)EzzEz
Ky
it j#ké#d i,j§1 E‘.(z”.z1 21k M/W)EziEzj
ifjfktd

The mathematical expectations required in the above table are given in the
Appendix (A.7) to (A.10).

Therefore, the mathematical expectation of the term given in (5.31)

is

(5.37) r(1+K-l+leZ)‘ Z.. +v0 2,2 +v0 2z ']‘f

. L G T2 O ) BB TYY 2% TYV 22y 18 Hy3
1 292 - - -8
TGOV 2 20 T Ey,
1- - -8

+ E- kzI‘e f02'

Therefore, using (5.29), we have

K
(5.38) EA#R’ = [(% 0+ v2eHT + (1 + —42-+ -;- ) z 2,

\

- -9
+yezz1] e f]3

- -8
+( 6+y9)z e f24

1,5 1.2 1--, -8
+[('2‘+'Z:+§'ey)1+§zz]e £32 3

and finally using (5.28) we get



(5.39)

z =

E(ff-m @ -m’

It should be noted that

Ez=E(X2'y) =1

[(%9"'\(292)1
K
2, V5.2~ -0 -
(1+4+29y)z1z] -i-\(ez1
1 2.2 - -, -8
(26+y 9)z1z1 e £,
K
1 2, 1,.2 1==4 -6
[(2+4+29y)l+zzz]e
2e-99f nn’ -e £, mu’ +
: 12 01
7 = = ’ =
and z Ez.l E(X2y1) 1'r1

18

5! +y85§]']e-ef

because XX = 1.

13
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Appendix

If ZyqrerraZyg  are independently normal with
2 ‘
(A.1) Ezu = 2q and Vz1i = 1, i=l,...,K2
then
K
2 9
(A.2) W= X 2z,
i=1 M

is distributed according to Non-Central Chi-Square distribution with Kz

degrees of freedom and

Ky

-2
> oz,
=] ]1

N |—

(A.3) 8 =
i

is the parameter of non-centrality.

The following mathematical expectations have been worked out by Nagar

and Aman Ullah (1973):

2 1. 1 -8 -2
(A.b4) E (zli W) = 5 e [z]i f12 + fOI]
(A.5) E(z..z. W iy=21; 5 &9%¢ i
. 11 21 2 %11 %1 122

where f12, fO] have been obtained from (4.14) by writing a = 1, ¢ = 2 and

a=0, ¢ =1, respectively.

Further,

4 -2 1-4 -6 6 - -9 3 -6
(A.6) E (z]i W) Z Zli e f24 + 4 zll e f]3 + e f02

2 2 -2 1-2 -2 0 1 ,-2 2 ] 1 -6 .
(A.7) E (z]iz]j W) i %1 z]j e f24 + A (z]i + z]j) e f]3 + ze f02’ i#j

3 2, _1:3 - -8 3- - -8
(A.8) E (z]iz]j W o) Z 214 14 e f24 + 7 %11 z1j e f]3 s i#]j

2 -2 _1- = -2 -8 1- - -8 .

(A.9)  E(zqyz2p W5 =gz 22 e Tfy vz iz e £, ik
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