4,200 research outputs found

    Exotic solutions in string theory

    Get PDF
    Solutions of classical string theory, correspondent to the world sheets, mapped in Minkowsky space with a fold, are considered. Typical processes for them are creation of strings from vacuum, their recombination and annihilation. These solutions violate positiveness of square of mass and Regge condition. In quantum string theory these solutions correspond to physical states |DDF>+|sp> with non-zero spurious component.Comment: accepted in Il Nuovo Cimento A for publication in 199

    Curve crossing in linear potential grids: the quasidegeneracy approximation

    Get PDF
    The quasidegeneracy approximation [V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne, and Y. B. Band, J. Phys. B {\bf 32}, 1845 (1999)] is used here to evaluate transition amplitudes for the problem of curve crossing in linear potential grids involving two sets of parallel potentials. The approximation describes phenomena, such as counterintuitive transitions and saturation (incomplete population transfer), not predictable by the assumption of independent crossings. Also, a new kind of oscillations due to quantum interference (different from the well-known St\"uckelberg oscillations) is disclosed, and its nature discussed. The approximation can find applications in many fields of physics, where multistate curve crossing problems occur.Comment: LaTeX, 8 pages, 8 PostScript figures, uses REVTeX and psfig, submitted to Physical Review

    Excitation of surface plasmon-polaritons in metal films with double periodic modulation: anomalous optical effects

    Get PDF
    We perform a thorough theoretical analysis of resonance effects when an arbitrarily polarized plane monochromatic wave is incident onto a double periodically modulated metal film sandwiched by two different transparent media. The proposed theory offers a generalization of the theory that had been build in our recent papers for the simplest case of one-dimensional structures to two-dimensional ones. A special emphasis is placed on the films with the modulation caused by cylindrical inclusions, hence, the results obtained are applicable to the films used in the experiments. We discuss a spectral composition of modulated films and highlight the principal role of ``resonance'' and ``coupling'' modulation harmonics. All the originating multiple resonances are examined in detail. The transformation coefficients corresponding to different diffraction orders are investigated in the vicinity of each resonance. We make a comparison between our theory and recent experiments concerning enhanced light transmittance and show the ways of increasing the efficiency of these phenomena. In the appendix we demonstrate a close analogy between ELT effect and peculiarities of a forced motion of two coupled classical oscillators.Comment: 24 pages, 17 figure

    Analytic calculation of nonadiabatic transition probabilities from monodromy of differential equations

    Full text link
    The nonadiabatic transition probabilities in the two-level systems are calculated analytically by using the monodromy matrix determining the global feature of the underlying differential equation. We study the time-dependent 2x2 Hamiltonian with the tanh-type plus sech-type energy difference and with constant off-diagonal elements as an example to show the efficiency of the monodromy approach. The application of this method to multi-level systems is also discussed.Comment: 13 pages, 2 figure

    Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    Full text link
    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the "feedout" of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.Comment: 12 pages, 4 figure

    Coherent Excitation of a Two-Level Atom driven by a far off-resonant Classical Field: Analytical Solutions

    Get PDF
    We present an analytical treatment of coherent excitation of a Two-Level Atom driven by a far-off resonant classical field. A class of pulse envelope is obtained for which this problem is exactly solvable. The solutions are given in terms of Heun function which is a generalization of the Hypergeometric function. The degeneracy of Heun to Hypergeometric equation can give all the exactly solvable pulse shapes of Gauss Hypergeometric form, from the generalized pulse shape obtained here. We discuss the application of the results obtained to the generation of XUV.Comment: 9 Pages, 8 Figures. Accepted for Physical Review A as a regular articl

    Luminescence of Tl+ ions in a KZnF3 crystal

    Get PDF
    The luminescence spectra of a KZnF3: Tl+ crystal are investigated in the energy range from 4.75 to 5.9 eV at temperatures of 10-300 K upon excitation into the A absorption band (5.7-6.3 eV). At T = 300 K, the luminescence spectra exhibit an intense band with a maximum at 5.45 eV, which is attributed to single Tl+ ions substituted for K+ ions. The 5.723-eV intense narrow band observed at T < 20 K is assigned to the 3Γ1u-1Γ1g zero-phonon transition, which is weakly allowed by the hyperfine interaction. The luminescence decay is studied as a function of temperature. The main characteristics of the luminescence spectra are adequately described in terms of the semiclassical theory based on the Franck-Condon principle and the Jahn-Teller effect for an excited sp configuration of the Tl+ ion with the use of the parameters obtained earlier from analyzing the absorption spectra of the system under investigation. © 2002 MAIK "Nauka/Interperiodica"

    Neuronal background of positioning of the posterior tentacles in the snail Helix pomatia

    Get PDF
    The location of cerebral neurons innervating the three recently described flexor muscles involved in the orientation of the posterior tentacles as well as their innervation patterns were investigated, applying parallel retrograde Co- and Ni-lysine as well as anterograde neurobiotin tracings via the olfactory and the peritentacular nerves. The neurons are clustered in eight groups in the cerebral ganglion and they send a common innervation pathway via the olfactory nerve to the flexor and the tegumental muscles as well as the tentacular retractor muscle and distinct pathways via the internal and the external peritentacular nerves to these muscles except the retractor muscle. The three anchoring points of the three flexor muscles at the base of the tentacle outline the directions of three force vectors generated by the contraction of the muscles along which they can pull or move the protracted tentacle which enable the protracted tentacle to bend around a basal pivot. In the light of earlier physiological and the present anatomical findings we suggest that the common innervation pathway to the muscles is required to the tentacle withdrawal mechanism whereas the distinct pathways serve first of all the bending of the protracted posterior tentacles during foraging

    Observation of Dirac plasmons in a topological insulator

    Full text link
    Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons of massless Dirac electrons were instead recently observed in a purely two-dimensional electron system (2DEG)like graphene, and their properties are promising for new tunable plasmonic metamaterials in the terahertz and the mid-infrared frequency range. Dirac quasi-particles are known to exist also in the two-dimensional electron gas which forms at the surface of topological insulators due to a strong spin-orbit interaction. Therefore,one may look for their collective excitations by using infrared spectroscopy. Here we first report evidence of plasmonic excitations in a topological insulator (Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W and period 2W to select suitable values of the plasmon wavevector k. Their lineshape was found to be extremely robust vs. temperature between 6 and 300 K, as one may expect for the excitations of topological carriers. Moreover, by changing W and measuring in the terahertz range the plasmonic frequency vP vs. k we could show, without using any fitting parameter, that the dispersion curve is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013

    Resonance effects due to the excitation of surface Josephson plasma waves in layered superconductors

    Full text link
    We analytically examine the excitation of surface Josephson plasma waves (SJPWs) in periodically-modulated layered superconductors. We show that the absorption of the incident electromagnetic wave can be substantially increased, for certain incident angles, due to the resonance excitation of SJPWs. The absorption increase is accompanied by the decrease of the specular reflection. Moreover, we find the physical conditions guaranteeing the total absorption (and total suppression of the specular reflection). These conditions can be realized for Bi2212 superconductor films.Comment: 17 pages, 3 figure
    • …
    corecore