24 research outputs found

    PPAR-Îł Gene Expression in Human Adipose Tissue Is Associated with Weight Loss After Sleeve Gastrectomy

    Get PDF
    Background: The peroxisome proliferator-activated receptor (PPAR)-γ plays a key role in adipose tissue differentiation and fat metabolism. However, it is unclear which factors may regulate its expression and whether obese patients have changes in adipose tissue expression of PPAR-γor potential regulators such as miR-27. Thus, our aims were to analyze PPAR-γ and miR-27 expression in adipose tissue of obese patients, and to correlate their levels with clinical variables. Subjects and methods: We included 43 morbidly obese subjects who underwent sleeve gastrectomy (31 of them completed 1-year follow-up) and 19 non-obese subjects. mRNA expression of PPAR-γ1 and PPAR-γ2, miR-27a, and miR-27b was measured by qPCR in visceral and subcutaneous adipose tissue. Clinical variables and serum adipokine and hormone levels were correlated with PPAR-γ and miR-27 expression. In addition, a systematic review of the literature regarding PPAR-γ expression in adipose tissue of obese patients was performed. Results: We found no differences in the expression of PPAR-γ and miR-27 in adipose tissue of obese patients vs. controls. The literature review revealed discrepant results regarding PPAR-γ expression in adipose tissue of obese patients. Of note, we described a significant negative correlation between pre-operative PPAR-γ1 expression in adipose tissue of obese patients and post-operative weight loss, potentially linked with insulin resistance markers. Conclusion: PPAR-γ1 expression in adipose tissue is associated with weight loss after sleeve gastrectomy and may be used as a biomarker for response to surgeryThis work was funded by the following grants to M.M.: ISCIII and FEDER, PI10/01692, PI16/01548, RD16/0017/0023, and I3SNS-INT12/049, L.H.C.: Junta de Castilla y León GRS 681/A/11, J.-L. T.: GRS 1587/A/17 and GRS1356/A/16, G.S.: ERC 260464, EFSD 2030, MICINNSAF2013-43506-R, and Comunidad de Madrid S2010/BMD-2326. G.S. is an investigator of the Ramón y Cajal Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ISCIII,PI10/01692,Miguel Marcos,PI16/01548,Miguel Marcos,Gerencia regional de salud,junta de castilla y león,GRS 681/A/11,Lourdes Hernández-Cosido,J.-L. T,Lourdes Hernández-Cosido,Gerencia Regional de Salud,Junta de Castilla y León,GRS 1587/A/17,Jorge-Luis Torres,GRS1356/A/16,Jorge-Luis Torre

    Tracking the antibody immunome in sporadic colorectal cancer by using antigen self-assembled protein arrays

    Get PDF
    © 2021 by the authors.Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.We gratefully acknowledge financial support from the Spanish Health Institute Carlos III (ISCIII) for the grants: FIS PI14/01538, FIS PI17/01930 and CB16/12/00400. We also acknowledge Fondos FEDER (EU) “Una manera de hacer Europa” and Junta Castilla-León (COVID19 grant COV20EDU/00187). Fundación Solórzano FS/38-2017. The Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0023, of the PE I + D + I 2017-2020, funded by ISCIII and FEDER. CNPq-National Council for Scientific and Technological Development (Brazil) (306258/2019-6) and FAPERJ-Foundation for Research Support of Rio de Janeiro State for the financial support (E-26/201.670/2017 and 210.379/2018). M. González-González is supported by MINECOPTA2019-017870-I.A. Landeira-Viñuela is supported by VIII Centenario-USAL PhD Program. P.J.-V. is supported by JCYL PhD Program and scholarship JCYL-EDU/601/2020. P.D. and E.B. are supported by a JCYL-EDU/346/2013 Ph.D. scholarship
    corecore