3,414 research outputs found
Quantum Gravity Momentum Representation and Maximum Invariant Energy
We use the idea of the symmetry between the spacetime coordinates x^\mu and
the energy-momentum p^\mu in quantum theory to construct a momentum space
quantum gravity geometry with a metric s_{\mu\nu} and a curvature
P^\lambda_{\mu\nu\rho}. For a closed maximally symmetric momentum space with a
constant 3-curvature, the volume of the p-space admits a cutoff with an
invariant maximum momentum a. A Wheeler-DeWitt-type wave equation is obtained
in the momentum space representation. The vacuum energy density and the
self-energy of a charged particle are shown to be finite, and modifications of
the electromagnetic radiation density and the entropy density of a system of
particles occur for high frequencies.Comment: 16 pages, LateX file, no figure
Noncommutative Einstein-AdS Gravity in three Dimensions
We present a Lorentzian version of three-dimensional noncommutative
Einstein-AdS gravity by making use of the Chern-Simons formulation of pure
gravity in 2+1 dimensions. The deformed action contains a real, symmetric
metric and a real, antisymmetric tensor that vanishes in the commutative limit.
These fields are coupled to two abelian gauge fields. We find that this theory
of gravity is invariant under a class of transformations that reduce to
standard diffeomorphisms once the noncommutativity parameter is set to zero.Comment: 11 pages, LaTeX, minor errors corrected, references adde
Abelian Anomalies in Nonlocal Regularization
Nonlocal regularization of QED is shown to possess an axial anomaly of the
same form as other regularization schemes. The Noether current is explicitly
constructed and the symmetries are shown to be violated, whereas the identities
constructed when one properly considers the contribution from the path integral
measure are respected. We also discuss the barrier to quantizing the fully
gauged chiral invariant theory, and consequences.Comment: 21 pages, UTPT-93-0
Instabilities in the nonsymmetric theory of gravitation
We consider the linearized nonsymmetric theory of gravitation (NGT) within
the background of an expanding universe and near a Schwarzschild metric. We
show that the theory always develops instabilities unless the linearized
nonsymmetric lagrangian reduces to a particular simple form. This theory
contains a gauge invariant kinetic term, a mass term for the antisymmetric
metric-field and a coupling with the Ricci curvature scalar. This form cannot
be obtained within NGT. Next we discuss NGT beyond linearized level and
conjecture that the instabilities are not a relic of the linearization, but are
a general feature of the full theory. Finally we show that one cannot add
ad-hoc constraints to remove the instabilities as is possible with the
instabilities found in NGT by Clayton.Comment: 29 page
Experimental hydrodynamics of the accelerated turbulent boundary layer with and without mass injection
Hydrodynamics of accelerated turbulent boundary layer with and without mass injectio
Increasing the Accuracy of Single Sequence Prediction Methods Using a Deep Semi-Supervised Learning Framework.
MOTIVATION: Over the past 50 years, our ability to model protein sequences with evolutionary information has progressed in leaps and bounds. However, even with the latest deep learning methods, the modelling of a critically important class of proteins, single orphan sequences, remains unsolved. RESULTS: By taking a bioinformatics approach to semi-supervised machine learning, we develop Profile Augmentation of Single Sequences (PASS), a simple but powerful framework for building accurate single-sequence methods. To demonstrate the effectiveness of PASS we apply it to the mature field of secondary structure prediction. In doing so we develop S4PRED, the successor to the open-source PSIPRED-Single method, which achieves an unprecedented Q3 score of 75.3% on the standard CB513 test. PASS provides a blueprint for the development of a new generation of predictive methods, advancing our ability to model individual protein sequences. AVAILABILITY: The S4PRED model is available as open source software on the PSIPRED GitHub repository (https://github.com/psipred/s4pred), along with documentation. It will also be provided as a part of the PSIPRED web service (http://bioinf.cs.ucl.ac.uk/psipred/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
The mass of the very massive binary WR21a
We present multi-epoch spectroscopic observations of the massive binary
system WR21a, which include the January 2011 periastron passage. Our spectra
reveal multiple SB2 lines and facilitate an accurate determination of the orbit
and the spectral types of the components. We obtain minimum masses of
and for the two components of
WR21a. Using disentangled spectra of the individual components, we derive
spectral types of O3/WN5ha and O3Vz~((f*)) for the primary and secondary,
respectively. Using the spectral type of the secondary as an indication for its
mass, we estimate an orbital inclination of and
absolute masses of and , in
agreement with the luminosity of the system. The spectral types of the WR21a
components indicate that the stars are very young (12 Myr), similar to the
age of the nearby Westerlund 2 cluster. We use evolutionary tracks to determine
the mass-luminosity relation for the total system mass. We find that for a
distance of 8 kpc and an age of 1.5 Myr, the derived absolute masses are in
good agreement with those from evolutionary predictions.Comment: 7 pages, 4 figures; accepted for publication in MNRA
- …