34 research outputs found

    Evaluation of different total leishmania amazonensis antigens for the development of a first-generation vaccine formulated with a toll-like receptor-3 agonist to prevent cutaneous leishmaniasis

    Get PDF
    Unfortunately, no any vaccine against leishmaniasis has been developed for human use. Therefore, a vaccine based on total Leishmania antigens could be a good and economic approach; and there are different methodologies to obtain these antigens. However, it is unknown whether the method to obtain the antigens affects the integrity and immune response caused by them. OBJECTIVES: to compare the protein profile and immune response generated by total L. amazonensis antigens (TLA) produced by different methods, as well as to analyse the immune response and protection by a first-generation vaccine formulated with sonicated TLA (sTLA) and polyinosinic:polycytidylic acid [Poly (I:C)]. METHODS: TLA were obtained by four different methodologies and their integrity and immune response were evaluated. Finally, sTLA was formulated with Poly (I:C) and their protective immune response was measured. FINDINGS: sTLA presented a conserved protein profile and induced a strong immune response. In addition, Poly (I:C) improved the immune response generated by sTLA. Finally, sTLA + Poly (I:C) formulation provided partial protection against L. amazonensis infection. MAIN CONCLUSIONS: The protein profile and immune response depend on the methodology used to obtain the antigens. Also, the formulation sTLA + Poly (I:C) provides partial protection against cutaneous leishmaniasis in mice.Fil: Germano, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Sanchez, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Bruna, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Garcia Bustos, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; ArgentinaFil: Sosa Lochedino, Arianna Lourdes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Salomón, María Cristina. Universidad Nacional de Cuyo; ArgentinaFil: Fernandes, Ana Paula. Universidade Federal de Minas Gerais; BrasilFil: Mackern Oberti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Cargnelutti, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentin

    Gas sensing properties of thermally evaporated lamellar MoO3

    No full text
    In this work, MoO3 was thermally evaporated onto gold interdigital fingers on quartz substrates and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The deposited MoO3 consist of stratified long rectangles (average length of 50 μm width of 5 μm and thickness of 500 nm) which are predominantly orthorhombic (alpha-MoO3). Each of these plates was composed of many nano-thick layers (average ~30 nm) placed by Van der Waals forces on top of each other forming lamellar patterns. The devices were used as sensors and exhibited considerable change in surface conductivity when exposed to NO2 and H2 gases at elevated temperature of 225 ºC. The structural and gas sensing properties of thermally evaporated MoO3 thin films were investigated

    Discrimination of normal and cancerous human skin tissues based on laser-induced spectral shift fluorescence microscopy

    No full text
    Abstract A homemade spectral shift fluorescence microscope (SSFM) is coupled with a spectrometer to record the spectral images of specimens based on the emission wavelength. Here a reliable diagnosis of neoplasia is achieved according to the spectral fluorescence properties of ex-vivo skin tissues after rhodamine6G (Rd6G) staining. It is shown that certain spectral shifts occur for nonmelanoma/melanoma lesions against normal/benign nevus, leading to spectral micrographs. In fact, there is a strong correlation between the emission wavelength and the sort of skin lesions, mainly due to the Rd6G interaction with the mitochondria of cancerous cells. The normal tissues generally enjoy a significant red shift regarding the laser line (37 nm). Conversely, plenty of fluorophores are conjugated to unhealthy cells giving rise to a relative blue shift i.e., typically SCC (6 nm), BCC (14 nm), and melanoma (19 nm) against healthy tissues. In other words, the redshift takes place with respect to the excitation wavelength i.e., melanoma (18 nm), BCC (23 nm), and SCC (31 nm) with respect to the laser line. Consequently, three data sets are available in the form of micrographs, addressing pixel-by-pixel signal intensity, emission wavelength, and fluorophore concentration of specimens for prompt diagnosis

    Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films

    No full text
    Hybrid phosphorus-doped silica films have been prepared through sol-gel processes to enhance the thermal and fire stability of cotton. To this aim, 3-aminopropyltriethoxysilane and N,N,N0,N0,N00,N00-hexakis-methoxymethyl-[1,3,5]triazine-2,4,6-triamine have been reacted with diethylphosphatoethyltriethoxysilane. FT-IR spectroscopy was exploited for assessing the formation of the silica skeleton on the cotton surface and for evaluating the interactions between the cellulosic fibres and the doped film. The effect of the concurrent presence of Si, P and N on cotton has been investigated by thermogravimetric analyses and the flammability behaviour has been assessed by vertical flammability tests, as well. The sol-gel treatments in the presence of phosphorus and nitrogen turned out to play a protective role on the degradation of the cotton fibres, hindering the formation of volatile species that fuel the further degradation and favouring the formation of a carbonaceous structur
    corecore