27 research outputs found

    Snf2 Family Gene Distribution in Higher Plant Genomes Reveals DRD1 Expansion and Diversification in the Tomato Genome

    Get PDF
    As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breedin

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    From transgene expression to public acceptance of transgenic plants: a matter of predictability

    No full text
    A good strategy for acceptable legislation of transgenic plants can be thought to be composed of several stacked levels of decision-making. These levels range from global to individual to cellular to nuclear and beyond. Any decision will depend on decisions made on the level below. Various examples are given, with emphasis on the most basal level, the level of transgene expression. Plant transformation suffers from a huge variability in transgene expression. In addition, in recent years a variety of (epi)genetic transgene instabilities have been described. It is demonstrated that the addition of so-called matrix-associated regions (MARs) around transgenes before Agrobacterium-mediated transformation improves the predictability of transgene expression significantly. MARs are thought to function as boundary elements that shield the enclosed transgenes from influences of the surrounding chromatin. Assuming that such boundary elements will make transgene expression overall more predictable, this approach is then likely to contribute to a more straight-forward assessment of the biosafety of transgenic plants. This will enhance the social acceptance, hence more successful market introduction of transgenic plants

    Detailed characterization of the posttranscriptional gene-silencing-related small RNA in a GUS gene-silenced tobacco.

    No full text
    Posttranscriptional gene-silencing phenomena such as cosuppression and RNA interference are associated with the occurrence of small, about 21-23 nt short RNA species homologous to the silenced gene. We here show that the small RNA present in silenced transgenic plants can easily be detected in total RNA isolated according to standard procedures. This will allow for the development of routine and early screenings for the presence of small RNA species and, therefore, gene silencing in transgenic plants. We further demonstrate that the small RNA fraction can be visualized with the SYBR Green II RNA stain, isolated from a gel, labeled and used as a specific probe. Using these approaches, we have fine-mapped the sequences of the GUS gene that are represented in the small RNA fraction of a GUS-silenced tobacco line containing an inverted repeat of the GUS gene. In this tobacco line, the silencing-associated small RNA is a mixture of fragments that cover the 3' two-thirds of the GUS coding region. The 5' coding and the 3' noncoding ends of the GUS mRNA are not represented in the small RNA fraction. The RNA fragments are not likely to be a primary synthesis product of an RNA-dependent RNA polymerase, but rather degradation products from nuclease activity. Surprisingly, RNA isolated from wild-type, untransformed plants showed the presence of a similar-sized small RNA pool. This might indicate the existence of small RNA species from putative endogenous genes that are down regulated by a similar posttranscriptional gene-silencing mechanism. The possibility of isolating and labeling the small RNA pool from wild-type plants will provide a way to identify and study such putative genes

    The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA

    No full text
    Heterospecific lox sites are mutated lox sites that in the presence of Cre recombinase recombine with themselves but not or much less with wildtype loxP. We here show that in Escherichia coli both lox511 and lox2272 sites become highly promiscuous with respect to loxP when in the presence of Cre one of the recombination partners is present in a larger stretch of an inverted repeat of non-lox DNA. In such a palindromic DNA configuration, also the occurrence of other DNA repeat-mediated recombination events is somewhat increased in the presence of Cre. The results indicate that in recombinase mediated cassette exchange or other double lox applications based on the exclusivity of heterospecific lox sites, or in research combining Cre-lox approaches with hairpin RNA for gene silencing, the presence of duplicated DNA around lox sites has to be taken into account. It is proposed that the presence of palindromic non-lox DNA interferes with the homology search of the Cre enzyme prior to the actual recombination event

    The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters

    No full text
    reporter gene with and without flanking matrix-associated regions (MARs).They were transferred into chrysanthemum viaAgrobacterium-mediated transformation. The quantitativeevaluation of GUS activity in a total of 127 independently derivedtransformantsestablished that in chrysanthemum the Lhca3.St.1 promoterwas 175 fold more active in the leaves than the dCaMV promoter was. The latterwas as poor in expression as the single CaMV promoter. The use of suchCaMV-based promoters in the genetic engineering of chrysanthemum should bediscouraged when high levels of transgene expression are desired. No clearinfluence of the presence of MARs was observed on the variability of GUS geneexpression, in contrast to earlier studies in tobacco. This may indicate apossible plant species dependent activity of MAR elements.Lhca3.St.1 promoter-driven GUS activity was relativelyhigher in the stem of chrysanthemum and proved stable over extensive timeperiods. Therefore this potato promoter is attractive to obtain high expressionlevels in chrysanthemum

    The effect of MAR elements on variation in spatial and temporal regulation of transgene expression

    No full text
    The level of transgene expression often differs among independent transformants. This is generally ascribed to different integration sites of the transgene into the plant genome in each independently obtained transformant (position effect). It has been shown that in tobacco transformants expressing, for example, a cauliflower mosaic virus (CaMV) 35S promoter-driven β-glucuronidase (GUS) reporter gene, these position-induced quantitative differences among individual transformants were reduced by the introduction of matrix-associated regions (MAR elements) on the T-DNA. We have previously shown by imaging of in planta firefly luciferase (luc) reporter gene activity that quantitative differences in transgene activity can be the result of either a variation in (1) level, (2) spatial distribution and/or (3) temporal regulation of transgene expression between independent transformants. It is not known which of these three different aspects of transgene expression is affected when the transgene is flanked by MAR elements. Here we have used the firefly luciferase reporter system to analyse the influence of MAR elements on the activity of a CaMV 35S-luc transgene in a population of independently transformed tobacco plants. Imaging of in planta LUC activity in these tobacco plant populations showed that the presence of MAR elements does not result in less variation in the average level of transgene expression between individual transformants. This result is different from that obtained previously with a 35S-GUS reporter gene flanked by MAR elements and reflects the differences in the stability of the LUC and GUS reporter proteins. Also the variation in spatial patterns of in vivo LUC activity is not reduced between independent transformants when the transgene is flanked by MAR elements. However, MAR elements do seem to affect the variation in temporal regulation of transgene expression between individual transformants. The potential effects of MAR elements on the variability of transgene expression and the relation to the stability of the (trans)gene product are discusse
    corecore