90 research outputs found

    Rapid Changes in Phospho-MAP/Tau Epitopes during Neuronal Stress: Cofilin-Actin Rods Primarily Recruit Microtubule Binding Domain Epitopes

    Get PDF
    Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies - AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422 - raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD

    Upregulation of Hemoglobin Expression by Oxidative Stress in Hepatocytes and Its Implication in Nonalcoholic Steatohepatitis

    Get PDF
    Recent studies revealed that hemoglobin is expressed in some non-erythrocytes and it suppresses oxidative stress when overexpressed. Oxidative stress plays a critical role in the pathogenesis of non-alcoholic steatohepatitis (NASH). This study was designed to investigate whether hemoglobin is expressed in hepatocytes and how it is related to oxidative stress in NASH patients. Analysis of microarray gene expression data revealed a significant increase in the expression of hemoglobin alpha (HBA1) and beta (HBB) in liver biopsies from NASH patients. Increased hemoglobin expression in NASH was validated by quantitative real time PCR. However, the expression of hematopoietic transcriptional factors and erythrocyte specific marker genes were not increased, indicating that increased hemoglobin expression in NASH was not from erythropoiesis, but could result from increased expression in hepatocytes. Immunofluorescence staining demonstrated positive HBA1 and HBB expression in the hepatocytes of NASH livers. Hemoglobin expression was also observed in human hepatocellular carcinoma HepG2 cell line. Furthermore, treatment with hydrogen peroxide, a known oxidative stress inducer, increased HBA1 and HBB expression in HepG2 and HEK293 cells. Importantly, hemoglobin overexpression suppressed oxidative stress in HepG2 cells. We concluded that hemoglobin is expressed by hepatocytes and oxidative stress upregulates its expression. Suppression of oxidative stress by hemoglobin could be a mechanism to protect hepatocytes from oxidative damage in NASH

    The Actin-Binding Protein Capulet Genetically Interacts with the Microtubule Motor Kinesin to Maintain Neuronal Dendrite Homeostasis

    Get PDF
    BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease

    Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled <it>in vitro </it>by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium.</p> <p>Results</p> <p>Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V or 12-O-tetradecanoylphorbol-13-acetate caused rapid disruption and internalization of AJs and TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor nonmuscle myosin (NM) II. The OI-V-induced disruption of AJs and TJs was prevented by either pharmacological inhibition of NM II with blebbistatin or by siRNA-mediated downregulation of NM IIA. Furthermore, AJ/TJ disassembly was attenuated by inhibition of Rho-associated kinase (ROCK) II, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase.</p> <p>Conclusion</p> <p>Our data suggest that stimulation of PKC disrupts epithelial apical junctions via ROCK-II dependent activation of NM II, which increases contractility of perijunctional actin filaments. This mechanism is likely to be important for cancer cell dissociation and tumor metastasis.</p

    Effect of creep on time-dependent behaviour of prestressed concrete integral abutment bridge

    Get PDF
    A parametric study was conducted to assess effect of creep on long term behaviour of prestressed concrete Integral Abutment Bridge (IAB). Varying backfill soil types were provided behind the bridge abutment and the interaction was modelled using linear springs. The effect of backfill soil type on the behaviour of the bridge was assessed through 75-year time-history simulations carried out in Commercial Finite Element Software (LUSAS). CEB-FIP 1990 creep model was used to analyse the linear viscoelastic behaviour of creep. The result has shown that creep and backfill soil type have a no severe effect on the behaviour of the bridge

    Mapping Cofilin-Actin Rods in Stressed Hippocampal Slices and the Role of cdc42 in Amyloid-beta-Induced Rods

    No full text
    Dissociated hippocampal neurons exposed to a variety of degenerative stimuli form neuritic cofilin-actin rods. Here we report on stimulus driven regional rod formation in organotypic hippocampal slices. Ultrastructural analysis of rods formed in slices demonstrates mitochondria and vesicles become entrapped within some rods. We developed a template for combining and mapping data from multiple slices, enabling statistical analysis for the identification of vulnerable sub-regions. Amyloid-beta (A beta) induces rods predominantly in the dentate gyrus region, and A beta-induced rods are reversible following washout. Rods that persist 24 h following transient (30 min) ATP-depletion are broadly distributed, whereas rods formed in response to excitotoxic glutamate localize within and nearby the pyramidal neurons. Time-lapse imaging of cofilin-GFP-expressing neurons within slices shows neuronal rod formation begins rapidly and peaks by 10 min of anoxia. In similar to 50% of responding neurons, A beta-induced rod formation acts via cdc42, an upstream regulator of cofilin. These new observations support a role for cofilin-actin rods in stress-induced disruption of cargo transport and synaptic function within hippocampal neurons and suggest both cdc42-depedent and independent pathways modulate cofilin activity downstream from A beta

    Mapping Cofilin-Actin Rods in Stressed Hippocampal Slices and the Role of cdc42 in Amyloid-beta-Induced Rods

    No full text
    Dissociated hippocampal neurons exposed to a variety of degenerative stimuli form neuritic cofilin-actin rods. Here we report on stimulus driven regional rod formation in organotypic hippocampal slices. Ultrastructural analysis of rods formed in slices demonstrates mitochondria and vesicles become entrapped within some rods. We developed a template for combining and mapping data from multiple slices, enabling statistical analysis for the identification of vulnerable sub-regions. Amyloid-beta (A beta) induces rods predominantly in the dentate gyrus region, and A beta-induced rods are reversible following washout. Rods that persist 24 h following transient (30 min) ATP-depletion are broadly distributed, whereas rods formed in response to excitotoxic glutamate localize within and nearby the pyramidal neurons. Time-lapse imaging of cofilin-GFP-expressing neurons within slices shows neuronal rod formation begins rapidly and peaks by 10 min of anoxia. In similar to 50% of responding neurons, A beta-induced rod formation acts via cdc42, an upstream regulator of cofilin. These new observations support a role for cofilin-actin rods in stress-induced disruption of cargo transport and synaptic function within hippocampal neurons and suggest both cdc42-depedent and independent pathways modulate cofilin activity downstream from A beta
    corecore