27,044 research outputs found
Surface control system for the 15 meter hoop-column antenna
The 15-meter hoop-column antenna fabricated by the Harris Corporation under contract to the NASA Langley Research Center is described. The antenna is a deployable and restowable structure consisting of a central telescoping column, a 15-meter-diameter folding hoop, and a mesh reflector surface. The hoop is supported and positioned by 48 quartz cords attached to the column above the hoop, and by 24 graphite cords from the base of the antenna column. The RF reflective surface is a gold plated molybdenum wire mesh supported on a graphite cord truss structure which is attached between the hoop and the column. The surface contour is controlled by 96 graphite cords from the antenna base to the rear of the truss assembly. The antenna is actually a quadaperture reflector with each quadrant of the surface mesh shaped to produce an offset parabolic reflector. Results of near-field and structural tests are given. Controls structures and electromagnetics interaction, surface control system requirements, mesh control adjustment, surface control system actuator assembly, surface control system electronics, the system interface unit, and control stations are discussed
Fourlined Plant Bug (Hemiptera: Miridae), a Reappraisal: Life History, Host Plants, and Plant Response to Feeding
Phenology of the fourlined plant bug, Poecilocapsus lineatus, is presented for southcen- tral Pennsylvania; life history and habits are re-examined. Although breeding was previously thought to occur only on woody plants, we found that nymphs develop on numerous herbs. An extensive list of hosts, more than 250 species in 57 families, is compiled from the literature and the authors\u27 observations; preferences are noted for plants in the Labiatae, Solanaceae, and Compositae. Damage consists of lesions on foliage, the size and shape of the spots varying with leaf texture, pubescence, and venation. Plant response to feeding is immediately visible, the lesions seeming to appear simultaneously with insertion of the bug\u27s stylets. Histolysis of plant tissues, the most rapid response to mind feeding yet reported, is attributed to a potent lipid enzyme whose active constituents are under investigation
Moving-base visual simulation study of decoupled controls during approach and landing of a STOL transport aircraft
The simulation employed all six rigid-body degrees of freedom and incorporated aerodynamic characteristics based on wind-tunnel data. The flight instrumentation included a localizer and a flight director which was used to capture and to maintain a two-segment glide slope. A closed-circuit television display of a STOLport provided visual cues during simulations of the approach and landing. The decoupled longitudinal controls used constant prefilter and feedback gains to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity. The pilots were enthusiastic about the decoupled longitudinal controls and believed that the simulator motion was an aid in evaluating the decoupled controls, although a minimum turbulence level with root-mean-square gust intensity of 0.3 m/sec (1 ft/sec) was required to mask undesirable characteristics of the moving-base simulator
The 15-meter diameter hoop/column antenna surface control actuator system
The design, development, and implementation status of the Surface Control Actuator System (SCAS) for the Hoop/Column Antenna are described with the primary focus on the design of the mechanical element. The SCAS is an electromechanical system that will automatically adjust the antenna shape by changing the length of control cords. Achieving and maintaining the proper surface shape and smoothness are critical to optimizing the electromagnetic characteristics of the antenna
Fixed-base simulation study of decoupled controls during approach and landing of a STOL transport airplane
A fixed-base visual simulation study has been conducted to evaluate the use of decoupled controls as a means for reducing pilot workload during approach and landing of an externally blown jet-flap short take-off and landing (STOL) transport. All six rigid-body degrees of freedom were employed with the aerodynamic characteristics based on wind-tunnel data. The primary piloting task was to use a flight director to capture and maintain a two-segment glide slope, with a closed-circuit television display of a STOL airport used during simulations of the flare and landing. The decoupled longitudinal controls used constant prefilter and feedback gains to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity. The pilots were enthusiastic about the decoupled longitudinal controls but believed the decoupled concept offered no significant advantage over conventional controls in the lateral mode
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation
The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered
- …
