2,289 research outputs found

    Coordinated Stem and NanoSIMS Analysis of Enstatite Whiskers in Interplanetary Dust Particles

    Get PDF
    Enstatite whiskers (less than 10 micrometer length, less than 200 nanometer width) occur in chondritic-porous interplanetary dust particles (CP IDPs), an Antarctic micrometeorite and a comet 81P/Wild-2 sample. The whiskers are typically elongated along the [100] axis and contain axial screw dislocations, while those in terrestrial rocks and meteorites are elongated along [001]. The unique crystal morphologies and microstructures are consistent with the enstatite whiskers condensing above approximately 1300 K in a low-pressure nebular or circumstellar gas. To constrain the site of enstatite whisker formation, we carried out coordinated mineralogical, chemical and oxygen isotope measurements on enstatite whiskers in a CP IDP

    Chemical Evolution of Presolar Organics in Astromaterials

    Get PDF
    Sub-micron, hollow organic globules reported from several carbonaceous chondrites, interplanetary dust particles, and comet Wild-2 samples returned by NASA?s Stardust mission are enriched in N-15/N-14 and D/H compared with terrestrial materials and the parent materials [1-4]. These anomalies are ascribed to the preservation of presolar cold molecular cloud material from where H, C, and N isotopic constraints point to chemical fractionation near 10 K [5]. An origin well beyond the planet forming region and their survival in meteorites suggests submicrometer organic globules were once prevalent throughout the solar nebula. The survival of the membrane structures indicates primitive meteorites and cometary dust particles would have delivered these organic precursors to the early Earth as well as other planets and satellites. The physical, chemical, and isotopic properties of the organic globules varies to its meteorite types and its lithologies. For example, organic globules in the Tagish Lake meteorite are always embedded in fined grained (poorly crystallized) saponite, and hardly encapsulated in coarse grained serpentine, even though saponite and serpentine are both main components of phyllosilicate matrix of the Tagish Lake meteorite. The organic globules are commonly observed in the carbonate-poor lithology but not in the carbonate-rich one. In Tagish Lake, isolated single globules are common, but in the Bells (CM2) meteorite, globules are mostly aggregated. We will review the evolutions of the organic globules from its birth to alteration in the parent bodies in terms of its own physical and chemical properties as well as its associated minerals

    Coordinated Chemical and Isotropic Studies of IDPS: Comparison of Circumstellar and Solar GEMS Grains

    Get PDF
    Silicate stardust in IDPs and meteorites include forsterite, amorphous silicates, and GEMS grains [1]. Amorphous presolar silicates are much less abundant than expected based on astronomical models [2], possibly destroyed by parent body alteration. A more accurate accounting of presolar silicate mineralogy may be preserved in anhydrous IDPs. Here we present results of coordinated TEM and isotopic analyses of an anhydrous IDP (L2005AL5) that is comprised of crystalline silicates and sulfides, GEMS grains, and equilibrated aggregates embedded in a carbonaceous matrix. Nanometer-scale quantitative compositional maps of all grains in two microtome thin sections were obtained with a JEOL 2500SE. These sections were then subjected to O and N isotopic imaging with the JSC NanoSIMS 50L. Coordinated high resolution chemical maps and O isotopic com-positions were obtained on 11 GEMS grains, 8 crystalline grains, and 6 equilibrated aggregates

    History of Nebular Processing Traced by Silicate Stardust in IDPS

    Get PDF
    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is to better understand the earliest stages of evolution of the Solar System starting materials

    Coordinated Mineralogical and Isotopic Analysis of a Cosmic Symplectite Identified in a Stardust Terminal Particle

    Get PDF
    Comet Wild-2 samples returned by the Stardust spacecraft contain a chemically diverse mixture of material, underscoring the complex nature of comets. Studies of entire Stardust aerogel tracks afford the opportunity to examine the fine-grained particle fragments distributed along the length of the track as well as the terminal particles. Previous TEM characterization of a terminal particle (TP) in track #147 revealed a symplectically intergrown iron sulfide and oxide assemblage. Mineralogically similar assemblages, known as cosmic symplectites (COS, formerly termed "new-PCP"), have only been identified in the primitive carbonaceous chondrite Acfer 094. Meteoritic COS have isotopically heavy O compositions (delta (sup 17), O-18 = 180per mille) that point to interactions with early solar system primordial water. In this study we report mineralogical and O isotopic measurements of the Wild-2 COS assemblage. Experimental: Track #147 is a "bulbous"-type track (4600 microns long) containing 7 terminal particles. The TPs were removed from the track, embedded in epoxy, and ultramicrotomed. A JEOL 2500SE 200 keV field-emission scanning-transmission electron microscope was used to obtain quantitative elemental maps and detailed mineralogical characterization. Following TEM analysis, two thin sections of TP4 (12 microns) were analyzed for O isotopes by raster ion imaging with the JSC NanoSIMS 50L. All three O isotopes were measured simultaneously using electron multipliers. San Carlos olivine grains were used as isotopic standards. Results and Discussion: The COS in the Wild-2 track #147 TP4 sample consists of symplectically intergrown pentlandite and nanocrystalline maghemite which coexists with high-Ca pyroxene with Na and Cr (kosmochlor component). This kosmochlor component could have a nebular origin and be precursors to type II chondrules in ordinary chondrites. Yet pentlandite is not a stable phase in the nebula. The COS in Acfer 094 also consists of pentlandite, but contains magnetite [4] rather than the more oxidized maghemite observed in the Wild-2 COS. The Acfer 094 COS display heavy O isotopic compositions that are the result of sulfidization and oxidation of Fe, Ni-metal grains and sulfides by O-17- and O-18-rich water in the solar nebula or possibly on the parent body. The O isotopic composition of the Wild-2 COS, however, is indistinguishable from terrestrial, indicating it was not altered by the same primordial aqueous reservoir as the Acfer 094 COS. The alteration could have occurred on the parent body by isotopically equilibrated ice. The mineralogy and petrography of Wild-2 samples suggests an incomplete or nascent hydration process. In future work we will analyze S isotopes in the track #147 TP4 COS and search for additional COS in Stardust samples

    Pristine Stratospheric Collections of Cosmic Dust

    Get PDF
    Since 1981, NASA has routinely collected interplanetary dust particles (IDPs) in the stratosphere by inertial impact onto silicone oil-coated flat plate collectors deployed on the wings of high-altitude aircraft [1]. The highly viscous oil traps and localizes the particles, which can fragment during collection. Particles are removed from the collectors with a micromanipulator and washed of the oil using organic solvents, typically hexane or xylene. While silicone oil is an efficient collection medium, its use is problematic. All IDPs are initially coated with this material (polydimethylsiloxane, n(CH3)2SiO) and traces of oil may remain after cleaning. The solvent rinse itself is also a concern as it likely removes indigenous organics from the particles. To avoid these issues, we used a polyurethane foam substrate for the oil-free stratospheric collection of IDPs

    Sulfur and Oxygen Isotopic Analysis of a Cosmic Symplectite from a Comet Wild 2 Stardust Terminal Particle

    Get PDF
    Introduction: Analyses of comet 81P/Wild 2 samples re-turned from the Stardust mission have uncovered surprising simi-larities to meteoritic material, including the identification of inner solar system grains [1-3]. The TEM characterization of terminal particle (TP) 4 from Stardust track #147 revealed an assemblage consisting of symplectically intergrown pentlandite and nanocrys-talline maghemite coexisting with high-Ca pyroxene [4]. Mineral-ogically similar cosmic symplectites (COS) containing pentlandite and magnetite in the primitive Acfer 094 meteorite are highly de-pleted in 16O (17O, 18O ~ 180 per mille) [5-7]. This isotopic signature is proposed to record alteration with primordial solar nebula water. Conversely, the normal O isotopic composition of the Stardust COS indicates alteration by a different aqueous reservoir, perhaps on the comet [8]. In this study, we analyzed the Wild 2 COS for S isotopes to further constrain its origin. Experimental: Thin sections of TP4 (12 m) were produced and their mineralogy was thoroughly characterized by TEM. Two of the sections were analyzed for O isotopes by isotopic imaging in the JSC NanoSIMS 50L. The sample in one of the slices was completely consumed. The remaining material in the adjacent slice was analyzed simultaneously for 16O, 32S, 33S, 34S, and 56Fe16O in electron multipliers using a Cs+ primary ion beam. Quasi-simulta-neous arrival (QSA) can have a significant effect on S isotopic ra-tios when using electron multipliers, resulting in undercounting of 32S [9]. Canyon Diablo troilite (CDT) was measured numerous times to deduce a correction factor for QSA and ensure measure-ment reproducibility. Isotopic ratios are reported relative to CDT. Results and Discussion: The Wild 2 COS is enriched in the heavy S isotopes relative to CDT (33S = 6.5 +/- 1.6 per mille; 34S = 5.1 +/- 0.7 per mille; 1). The degree of 33S enrichment indicates mass-inde-pendent fractionation (MIF) with 33S = 3.9 +/- 1.7 per mille. MIF of S has been observed in some chondrules (33S up to 0.11per mille) [10], but this effect has not been identified in sulfides from carbonaceous chondrites [11] or IDPs [12]. S isotopic analysis of Stardust impact craters also did not reveal MIF or anomalies, save for one potential 32S-rich presolar sulfide [13]. Measurement errors on these impact craters were much larger than those in this study, however. MIF of S has been proposed to result from heterogeneities in the solar neb-ula from nucleosynthetic components [14] or photochemical irra-diation of solar nebula gas [10]. Presolar SiC grains are observed to have 32S enrichments [15, 16] contrary to the S isotopic compo-sition of the cometary COS. The S isotopic composition more likely reflects irradiation of nebular gas

    Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Get PDF
    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection.

    Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix

    Get PDF
    Meteoritic organic matter is a complex conglomeration of species formed in distinct environments and processes in circumstellar space, the interstellar medium, the Solar Nebula and asteroids. Consequently meteorites constitute a unique record of primordial organic chemical evolution. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is little information as to how these species are spatially distributed and their relationship to the host mineral matrix. The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) aqueous alteration that may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. Here we present the results of the first coordinated in situ isotopic and chemical mapping study of the Bells meteorite using a newly developed two-step laser mass spectrometer (mu-L(sup 2)MS) capable of measuring a broad range of organic compounds

    The Spatial Distribution and Mineralogical Association of Organics in the Tagish Lake and Bells Carbonaceous Chondrites

    Get PDF
    Chondritic meteorites represent some of the most primitive Solar System materials available for laboratory analysis. While the presence of simple organic molecules has been well documented in such materials [1], little is known about their spatial distribution and to what extent, if any, they exhibit specific mineralogical associations. This dichotomy arises since organic analysis typically involves solvent extraction as a preliminary step. To address these issues we have used two-step laser mass spectrometry (L 2MS) to map in situ the spatial distribution of aromatic and conjugated organics at the micron scale in freshly exposed surfaces of the Tagish Lake and Bells carbonaceous chondrites. Our specific goals are two-fold; firstly to investigate if and how abundance of organic species varies within the meteorite matrix both as an ensemble, and with respect to functional group (e.g., R-OH vs. RCH3) and between members of the same homologous series (e.g., R-H vs. R-(CH2)H). Secondly, to determine whether observed spatial variations can be related to specific mineralogical and/or physical characteristics of the host matrix. In regard to the latter we are particularly interested in the role that carbonaceous nanoglobules [2] play as reservoirs of organic matter. Such globules, which are believed to have formed by photochemical processing of organic-rich ices in the presolar cold molecular cloud or the outermost reaches of the early protosolar disk, are abundant in both the Bells and Tagish Lake chondrites and are noteworthy for having particularly high enrichments in 2H and 15N [3,4]
    corecore