
NM-SCALE ANATOMY OF AN ENTIRE STARDUST CARROT TRACK.  K.Nakamura-Messenger
1,2
, L. P. 

Keller
1
, S. J. Clemett

1,3
 and S. Messenger

1
. 
1
Robert M. Walker Laboratory for Space Science/Astromaterials Re-

search and Exploration Science Directorate NASA Johnson Space Center, Houston, TX 77058, USA, 
2
ESCG/ Ja-

cobs Technology, TX 77058, USA, 
3
ESCG/ ERC Inc., TX 77058. USA (keiko.nakamura-1@nasa.gov). 

 

Introduction:  Comet Wild-2 samples collected by 

NASA’s Stardust mission are extremely complex, het-

erogeneous, and have experienced wide ranges of al-

teration during the capture process. There are two ma-

jor types of track morphologies: “carrot” and “bul-

bous,” that reflect different structural/compositional 

properties of the impactors.  Carrot type tracks are 

typically produced by compact or single mineral grains 

which survive essentially intact as a single large termi-

nal particle.  Bulbous tracks are likely produced by 

fine-grained or organic-rich impactors [1].  Owing to 

their challenging nature and especially high value of 

Stardust samples, we have invested considerable effort 

in developing both sample preparation and analytical 

techniques tailored for Stardust sample analyses.  Our 

report focuses on our systematic disassembly and coor-

dinated analysis of Stardust carrot track #112 from the 

mm to nm-scale.  

Cometary Track# 112: is 1947 µm long carrot track 

extracted from aerogel tile C2067 as a keystone that 

was subsequently allocated to our team.  The terminal 

particle extracted from track T112 consists of an ~10 

µm rounded grain of forsteritic olivine [2].  The O iso-

topic composition of this terminal particle measured by 

JSC NanoSIMS 50L was found to be 
16
O-rich (δ17O = -

65 ± 4, δ18O = -59 ± 3) [2], which is similar to both the 

refractory CAI-like Wild-2 sample previously reported 

by [3], and  the recently determined oxygen isotopic 

composition of the Sun [4].  Trace organic (PAH 

molecules) measurements of the terminal particle by 

µL
2
MS are reported in [5].  We systematically exam-

ined all the fine grains along the track wall to deter-

mine if they are small fragments of the same material 

as the terminal particle shed during the capture event, 

or whether they represent discrete materials different 

from the terminal particle.  Our preliminary investiga-

tion focused on the detailed mineralogy and chemistry 

of the small fragments using transmission electron mi-

croscopy (TEM).  Follow-on analyses will include co-

ordinated isotopic analyses using the JSC NanoSIMS. 

Dissect a track in aerogel: The track 112 track wall 

was photo-documented using an extended depth-of-

field  image processing technique that generates a sin-

gle in-focus image from a series of photographs (Fig. 

1),.  We also imaged the sample under UV light to dis-

criminate compressed aerogel from indigenous 

cometary material.  The terminal particle was removed 

and processed separately. The keystone containing 

track# 112 was gently placed on a very thin layer of 

low-viscosity epoxy and heated at ~70º C under vac-

uum for a couple of hours.  This process conserves the 

original shape and size of the track.  Additional ali-

quots of epoxy were added little by little under vacuum 

until the keystone was completely impregnated by ep-

oxy.  The epoxy block was then trimmed down along 

the track (Fig. 2).  To date, we have prepared 385 sec-

tions of 70 nm-thickness using ultramicrotomy and 

deposited on TEM grids (Fig.3).  Imaging and selected 

area electron diffraction data were obtained using a 

JEOL 2500SE field-emission scanning TEM (FE-

STEM) equipped with an energy-dispersive X-ray de-

tector (EDX) analysis system capable of nanometer-

scale compositional  mapping. 

Terminal Particle Mineralogy: We have previously 

reported preliminary data on the mineralogy and mi-

crostructure of the terminal particle [6].  EDX spectra 

show that the core of the grain is Fo99 - x-ray mapping 

reveals a slight enhancement in Fe towards the rim of 

the grain to Fo97.  The forsterite is strained and shows 

a high density (2x10
10
/cm

2
) of oriented planar defects 

along (100).  The planar defects in the forsteritic ter-

minal particle likely result from shock.  It is unknown 

whether the shock effects resulted from processes that 

occurred on Wild-2 or if they formed during the cap-

ture event.   

Track Mineralogy: As shown in Fig. 4, the track 

morphology is well-preserved in ultramicrotome thin 

sections and material is intact.  The aerogel within 20 

um of the track wall (darker contrast in Fig. 4) was 

compressed by the impact.  Numerous sub-micrometer 

sized grains are observed along the track wall.  Many 

of these tiny grains consist of melt particles (cometary 

material intimately mixed with melted aerogel) (Fig.5).  

Their compositions are enriched in Si, and minor Mg, 

Ca, S, Cr and Fe. One enstatite grain (200 nm in size) 

encapsulated in melt aerogel was observed but no 

forsterite grains were found so far. Three diamond 

grains (100-350 nm in size) are found both along the 

track and inside the compressed aerogel area (Fig. 5).  

Conclusions:  We have demonstrated the ability to 

ultramicrotome an entire track along it's axis without 

first compressing the aerogel.  This innovation allows 

us to examine the distribution of fragments along the 

entire track from the entrance hole all the way to the 

terminal particle.  For Track 112, we observed that the 

mineralogy of fragments along the track axis was dif-

ferent from that of the terminal particle.  The fragments 
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are dominated by melt particles that result from the 

interaction of the impacting particle with molten 

aerogel.  In addition, we have observed multiple grains 

of well-crystallized diamond.  Future NanoSIMS iso-

topic analyses are planned to constrain their origin. 
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