586 research outputs found

    On the black hole limit of rotating fluid bodies in equilibrium

    Full text link
    Recently, it was shown that the extreme Kerr black hole is the only candidate for a (Kerr) black hole limit of stationary and axisymmetric, uniformly rotating perfect fluid bodies with a zero temperature equation of state. In this paper, necessary and sufficient conditions for reaching the black hole limit are presented.Comment: 8 pages, v2: one footnote and one reference added, accepted for publication in CQ

    Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes

    Full text link
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. The one type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made (including title) to coincide with published versio

    Equatorial symmetry/antisymmetry of stationary axisymmetric electrovac spacetimes

    Get PDF
    Two theorems are proved concerning how stationary axisymmetric electrovac spacetimes that are equatorially symmetric or equatorially antisymmetric can be characterized correctly in terms of the Ernst potentials \E and Φ\Phi or in terms of axis-data.Comment: 8 page

    Approaches to the Monopole-Dynamic Dipole Vacuum Solution Concerning the Structure of its Ernst's Potential on the Symmetry Axis

    Get PDF
    The FHP algorithm allows to obtain the relativistic multipole moments of a vacuum stationary axisymmetric solution in terms of coefficients which appear in the expansion of its Ernst's potential on the symmetry axis. First of all, we will use this result in order to determine, at a certain approximation degree, the Ernst's potential on the symmetry axis of the metric whose only multipole moments are mass and angular momentum. By using Sibgatullin's method we analyse a series of exacts solutions with the afore mentioned multipole characteristic. Besides, we present an approximate solution whose Ernst's potential is introduced as a power series of a dimensionless parameter. The calculation of its multipole moments allows us to understand the existing differences between both approximations to the proposed pure multipole solution.Comment: 24 pages, plain TeX. To be published in General Relativity and Gravitatio

    State of the art: iterative CT reconstruction techniques

    Get PDF
    Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging

    Magnetization of noncircular quantum dots

    Full text link
    We calculate the magnetization of quantum dots deviating from circular symmetry for noninteracting electrons or electrons interacting according to the Hartree approximation. For few electrons the magnetization is found to depend on their number, and the shape of the dot. The magnetization is an ideal probe into the many-electron state of a quantum dot.Comment: 11 RevTeX pages with 6 included Postscript figure

    Dynamics of charged fluids and 1/L perturbation expansions

    Full text link
    Some features of the calculation of fluid dynamo systems in magnetohydrodynamics are studied. In the coupled set of the ordinary linear differential equations for the spherically symmetric α2\alpha^2-dynamos, the problem represented by the presence of the mixed (Robin) boundary conditions is addressed and a new treatment for it is proposed. The perturbation formalism of large-\ell expansions is shown applicable and its main technical steps are outlined.Comment: 16 p

    Hysteresis effect due to the exchange Coulomb interaction in short-period superlattices in tilted magnetic fields

    Full text link
    We calculate the ground-state of a two-dimensional electron gas in a short-period lateral potential in magnetic field, with the Coulomb electron-electron interaction included in the Hartree-Fock approximation. For a sufficiently short period the dominant Coulomb effects are determined by the exchange interaction. We find numerical solutions of the self-consistent equations that have hysteresis properties when the magnetic field is tilted and increased, such that the perpendicular component is always constant. This behavior is a result of the interplay of the exchange interaction with the energy dispersion and the spin splitting. We suggest that hysteresis effects of this type could be observable in magneto-transport and magnetization experiments on quantum-wire and quantum-dot superlattices.Comment: 3 pages, 3 figures, Revtex, to appear in Phys. Rev.

    Incommensurate ground state of double-layer quantum Hall systems

    Full text link
    Double-layer quantum Hall systems possess interlayer phase coherence at sufficiently small layer separations, even without interlayer tunneling. When interlayer tunneling is present, application of a sufficiently strong in-plane magnetic field B>BcB_\parallel > B_c drives a commensurate-incommensurate (CI) transition to an incommensurate soliton-lattice (SL) state. We calculate the Hartree-Fock ground-state energy of the SL state for all values of BB_\parallel within a gradient approximation, and use it to obtain the anisotropic SL stiffness, the Kosterlitz-Thouless melting temperature for the SL, and the SL magnetization. The in-plane differential magnetic susceptibility diverges as (BBc)1(B_\parallel - B_c)^{-1} when the CI transition is approached from the SL state.Comment: 12 pages, 7 figures, to be published in Physical Review
    corecore