206 research outputs found

    Magnetic Dipole Absorption of Radiation in Small Conducting Particles

    Full text link
    We give a theoretical treatment of magnetic dipole absorption of electromagnetic radiation in small conducting particles, at photon energies which are large compared to the single particle level spacing, and small compared to the plasma frequency. We discuss both diffusive and ballistic electron dynamics for particles of arbitrary shape. The conductivity becomes non-local when the frequency is smaller than the frequency \omega_c characterising the transit of electrons from one side of the particle to the other, but in the diffusive case \omega_c plays no role in determining the absorption coefficient. In the ballistic case, the absorption coefficient is proportional to \omega^2 for \omega << \omega_c, but is a decreasing function of \omega for \omega >> \omega_c.Comment: 25 pages of plain TeX, 2 postscipt figure

    Extension of nano-confined DNA: quantitative comparison between experiment and theory

    Get PDF
    The extension of DNA confined to nanochannels has been studied intensively and in detail. Yet quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose we performed new experiments, measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic buffer strength. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths the agreement is less good. We discuss possible reasons. Our approach allows, in principle, to measure the Kuhn length and effective width of a single DNA molecule and more generally of semiflexible polymers in solution.Comment: Revised version, 6 pages, 2 figures, 1 table, supplementary materia

    Effect of turbulence on collisional growth of cloud droplets

    Get PDF
    We investigate the effect of turbulence on the collisional growth of um-sized droplets through high- resolution numerical simulations with well resolved Kolmogorov scales, assuming a collision and coalescence efficiency of unity. The droplet dynamics and collisions are approximated using a superparticle approach. In the absence of gravity, we show that the time evolution of the shape of the droplet-size distribution due to turbulence-induced collisions depends strongly on the turbulent energy-dissipation rate, but only weakly on the Reynolds number. This can be explained through the energy dissipation rate dependence of the mean collision rate described by the Saffman-Turner collision model. Consistent with the Saffman-Turner collision model and its extensions, the collision rate increases as the square root of the energy dissipation rate even when coalescence is invoked. The size distribution exhibits power law behavior with a slope of -3.7 between a maximum at approximately 10 um up to about 40 um. When gravity is invoked, turbulence is found to dominate the time evolution of an initially monodisperse droplet distribution at early times. At later times, however, gravity takes over and dominates the collisional growth. We find that the formation of large droplets is very sensitive to the turbulent energy dissipation rate. This is due to the fact that turbulence enhances the collisional growth between similar sized droplets at the early stage of raindrop formation. The mean collision rate grows exponentially, which is consistent with the theoretical prediction of the continuous collisional growth even when turbulence-generated collisions are invoked. This consistency only reflects the mean effect of turbulence on collisional growth

    Collective versus single-particle effects in the optical spectra of finite electronic quantum systems

    Full text link
    We study optical spectra of finite electronic quantum systems at frequencies smaller than the plasma frequency using a quasi-classical approach. This approach includes collective effects and enables us to analyze how the nature of the (single-particle) electron dynamics influences the optical spectra in finite electronic quantum systems. We derive an analytical expression for the low-frequency absorption coefficient of electro-magnetic radiation in a finite quantum system with ballistic electron dynamics and specular reflection at the boundaries: a two-dimensional electron gas confined to a strip of width a (the approach can be applied to systems of any shape and electron dynamics -- diffusive or ballistic, regular or irregular motion). By comparing with results of numerical computations using the random-phase approximation we show that our analytical approach provides a qualitative and quantitative understanding of the optical spectrum.Comment: 4 pages, 3 figure

    Strength distribution of repeatedly broken chains

    Full text link
    We determine the probability distribution of the breaking strength for chains of N links, which have been produced by repeatedly breaking a very long chain.Comment: 4 pages, 1 figur

    Coagulation by Random Velocity Fields as a Kramers Problem

    Full text link
    We analyse the motion of a system of particles suspended in a fluid which has a random velocity field. There are coagulating and non-coagulating phases. We show that the phase transition is related to a Kramers problem, and use this to determine the phase diagram, as a function of the dimensionless inertia of the particles, epsilon, and a measure of the relative intensities of potential and solenoidal components of the velocity field, Gamma. We find that the phase line is described by a function which is non-analytic at epsilon=0, and which is related to escape over a barrier in the Kramers problem. We discuss the physical realisations of this phase transition.Comment: 4 pages, 3 figure

    Caustic formation in a non-Gaussian model for turbulent aerosols

    Full text link
    Caustics in the dynamics of heavy particles in turbulence accelerate particle collisions. The rate J\mathscr{J} at which these singularities form depends sensitively on the Stokes number St, the non-dimensional inertia parameter. Exact results for this sensitive dependence have been obtained using Gaussian statistical models for turbulent aerosols. However, direct numerical simulations of heavy particles in turbulence yield much larger caustic-formation rates than predicted by the Gaussian theory. In order to understand possible mechanisms explaining this difference, we analyse a non-Gaussian statistical model for caustic formation in the limit of small St. We show that at small St, J\mathscr{J} depends sensitively on the tails of the distribution of Lagrangian fluid-velocity gradients. This explains why different authors obtained different St-dependencies of J\mathscr{J} in numerical-simulation studies. The most-likely gradient fluctuation that induces caustics at small St, by contrast, is the same in the non-Gaussian and Gaussian models. Direct-numerical simulation results for particles in turbulence show that the optimal fluctuation is similar, but not identical, to that obtained by the model calculations.Comment: 12 pages, 3 figures, 1 tabl
    • …
    corecore