6,198 research outputs found

    An innovative approach to compensator design

    Get PDF
    The design is considered of a computer-aided-compensator for a control system from a frequency domain point of view. The design technique developed is based on describing the open loop frequency response by n discrete frequency points which result in n functions of the compensator coefficients. Several of these functions are chosen so that the system specifications are properly portrayed; then mathematical programming is used to improve all of these functions which have values below minimum standards. To do this, several definitions in regard to measuring the performance of a system in the frequency domain are given, e.g., relative stability, relative attenuation, proper phasing, etc. Next, theorems which govern the number of compensator coefficients necessary to make improvements in a certain number of functions are proved. After this a mathematical programming tool for aiding in the solution of the problem is developed. This tool is called the constraint improvement algorithm. Then for applying the constraint improvement algorithm generalized, gradients for the constraints are derived. Finally, the necessary theory is incorporated in a Computer program called CIP (compensator Improvement Program). The practical usefulness of CIP is demonstrated by two large system examples

    Compensator improvement for multivariable control systems

    Get PDF
    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples

    Inelastic scattering of broadband electron wave packets driven by an intense mid-infrared laser field

    Full text link
    Intense, 100 fs laser pulses at 3.2 and 3.6 um are used to generate, by multi-photon ionization, broadband wave packets with up to 400 eV of kinetic energy and charge states up to Xe+6. The multiple ionization pathways are well described by a white electron wave packet and field-free inelastic cross sections, averaged over the intensity-dependent energy distribution for (e,ne) electron impact ionization. The analysis also suggests a contribution from a 4d core excitation in xenon

    Re-entrant ferroelectricity in liquid crystals

    Full text link
    The ferroelectric (Sm C^*) -- antiferroelectric (Sm CA^*_A) -- reentrant ferroelectric (re Sm C^*) phase temperature sequence was observed for system with competing synclinic - anticlinic interactions. The basic properties of this system are as follows (1) the Sm C^* phase is metastable in temperature range of the Sm CA^*_A stability (2) the double inversions of the helix handedness at Sm C^* -- Sm CA^*_A and Sm CA^*_A% -- re-Sm C^* phase transitions were found (3) the threshold electric field that is necessary to induce synclinic ordering in the Sm CA^*_A phase decreases near both Sm CA^*_A -- Sm C^* and Sm CA^*_A -- re-Sm C^* phase boundaries, and it has maximum in the middle of the Sm CA^*_A stability region. All these properties are properly described by simple Landau model that accounts for nearest neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR

    Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    Get PDF
    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and included in the development of the aerodynamic database uncertainty for pitching moment
    corecore