ELECTRICAL ENGINEERING / MISSISSIPPI STATE UNIVERSITY

COMPENSATOR IMPROVEMENT
 FOR MULTIVARIABLE CONTROL SYSTEMS

by JERREL R. MITCHELL, WILLIE L. McDANIEL, Jr. \& LENNOR LYNN GRESHAM

MSSU-EIRS-EE-78-1

COLLEGE OF ENGINEERING ADMINISTRATION

HARRY C. SIMRALL, MSS.
dean, college of engineering
WILLIE L. MCDANIEL, JR., PH.D.
ASSOCIATE DEAN
WALTER R. CARNE, PHD.
ASSOCIATE DEAN
LAWRENCE J. HILL, MSS.
director, engineering extension
CHARLES B. CLIETT, MAS.
AEROPHYSICS \& AEROSPACE ENGINEERING
WILLIAM R. FOX, PHD.
agricultural \& biological'engineering
JOHN L. WEEKS, JR., PH.D.
chemical engineering
ROBERT M. SCHOLTES, PHD.
civil engineering
B. J. BALL, PH.D.
electrical engineering
W. H. EMBANKS, MED.
engineering graphics
FRANK E. COTTON, JR., PHD.
industrial engineering
C. T. MARLEY, PH.D.
mechanical engineering
JOHN I. BAULK, PHD.
For additional copies or information

NuCLEAR ENGINEERING
engineering and industrial research station dRawer de MISSISSIPPI STATE UNIVERSITY
ELDRED W. HOUGH, PH.D. $\lambda^{\text {MISSISSIPPI STATE, MISSISSIPPI } 39762}$
petroleum engineering

MISSISSIPPI STATE UNIVERSITY
 DEPARTMENT OF ELECTRICAL ENGINEERING

COMPENSATOR IMPROVEMENT FOR

MULTIVARIABLE CONTROL SYSTEMS

For Period Covering
August 25, 1976 to August 25, 1977

Final Report
NAS8-31568
Principal Investigators:
Jerrel R. Mitchell, Ph.D:
Willie L. McDaniel, Jr., Ph.D.

Prepared by:
Lennor Lynn Gresham

Prepared for:

George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812

The objective of this research is to develop the theory and associated numerical technique for the iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. The multivariable capabilities allow system suboptimization of several control loops with coupled characteristics. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the Multiple Input, Multiple Output Compensator Improvement Program (CIP).

The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples. Further, the capabilities of and possible extensions to the algorithm are delineated.

TABLE OF CONTENTS

Chapter Page
ABSTRACT ii
LIST OF FIGURES v
LIST OF TABLES vi
SYMBOLS vii
I. INTRODUCTION AND LITERATURE SURVEY 1
Introduction 1
Literature Survey of Previous Work 4
The Research Area 15
II. DESCRIPTION OF THE DESIGN ALGORITHM 16
An Overview of the Design Problem 16
The Algorithm Design Philosophy 18
Theoretical Concepts Associated with the Algorithm 20
III. DESCRIPTION OF THE COMPUTATIONAL FLOW DIAGRAM 27
Implementation of the Design Algorithm 27
Section A: Data Input 28
Section B: Frequency Response Manipulations 33
Section C: Evaluation of the Continuance Criterion 36
Section D: Determination of the Gradient Vectors 38
Section E: Calculation of the Directional Vector 42
IV. INVESTIGATIONS AND EXAMPLES 47

TABLE OF CONTENTS (Continued)

Chapter Page
v. CONCLUSIONS AND RECOMMENDATIONS 59
APPENDICES 64
Appendix A: Subprogram Summaries of the Compensator Improvement Program 65
Appendix B: Fortran IV Listing of the Compensator Improvement Program 110
REFERENCES 144

LIṠT OF FIGURES

Figure Page

1. General Configuration for a Single Control Input System 6
2. A Multivariable Control System 17
3. Computational Flow Diagram of the CIP Algorithm 19
4. Vector Representation of the Multivariable Control System 22
5. Logic Diagram Representing the Frequency Response Manipulations of Section B 34
6. Logic Diagram of the Continuance Criterion of Section C 37
7. Logic Diagram Representing the Calculation of the Gradient Vectors of Section D 39
8. Logje Diagram Representing the Calculation of the Directional Vector and Corresponding Compensator Enhancement of Section E 43
9. s-Plane Configuration Displaying the Sector of Desirāble Compensator Pole Locations and Typical Pole Locations for a Second Order System 45
10. Block Diagram Representing Each Subsystem of the Finned Vehicle Example 48
11. Frequency Response Representing Each Subsystem of the Uncompensated System of the Finned Vehicle Example 50
12. The Improved Compensated Frequency Response of the Finned Vehicle Example 50

LIST OF TABLES

Table Page

1. General Input Data Information 29
2. Frequency Response Input Data Describing the Plant in the Finned Vehicle Example 48
3. System Specifications for the Finned Vehicle Example 51
4. Frequency Response Data Describing the Coupling Elements of the Plant Matrix [P(s)] in the Coupled Finned Vehicle Examiple 53
5. Plant Dynamics Describing the Yaw/Ro11 Ascent Flight Control System for the Space Shuttle Example 55
6. Compensation Matrix $[\mathrm{G}(\mathrm{s})$] in Cascaded Factor Form
for the Space Shuttle Example 56
7. System Specifications for the Space Shuttle Example 58

SYMBOLS

Abbreviations

AM	Attenuation margin
CIA	Constraint Improvement Algorithm [7]
CIP	Compensator Improvement Program
GM	Gain margin
PM	Phase margin
SM	Stability margin
SIFR, TIFR	Sum improved frequency response, Total improved frequency response

Symbols

α	Point at which the general feedback system is broken in obtaining the open-loop frequency response
$\mathrm{d}(\omega)$	Distance from some $\mathrm{GH}(\mathrm{j} \omega)$ frequency point to another point in the plane
[G(s)]	A NXM matrix transfer function describing the cascaded compensation and control law
[P(s)]	A MxN matrix describing the open loop frequency response of the plant
[C(s)]	A Nx1 output vector
$\mathrm{C}_{\mathrm{K}}(\mathrm{s})$	Represents the kth subsystem output vector
[$\mathrm{E}(\mathrm{s})$]	A NxI error vector.
[$\mathrm{R}(\mathrm{s})$]	A Nxl input vector*
[$\mathrm{X}(\mathrm{s})$]	A $N \times 1$ vector representing the sensed or neasured states
[$\mathrm{H}(\mathrm{s}$)]	A NXN unity matrix
I	A unity matrix
GH ($\mathrm{j} \omega$)	Open-loop frequency response

SYMBOLS (Continued)

Symbols

Σ	Summation	
π	Product	
RE[z]	Real part of the complex variable z	
IM[z]	Imaginary part of the complex variable	
VV(x)	The gradient of the function $V(x)$	
ε	Belongs to or element of	
$\frac{\partial d}{\partial w}$	Partial of d with respect to a parameter w	
	Indicates the underlined quantity is a vector	
[]	Indicates the enclosed quantity is a matrix	
\|		The magnitude of a scalar; the determinant of a matrix
j	The imaginary operator when it does not appear as a subscript	
s	The Laplace transform variable representing the complex frequency $\sigma+j \omega$; for convenience, used interchangeably with $j \omega$ indicating the real frequency $\sigma=0$ when applicable	
*	Denotes the complex conjugate	

CHAPTER I

INTRODUCTION AND SURVEY OF PREVIOUS WORK

Introduction

The space age era has challenged the control theorist to examine the fastest and most efficient means of system design and analysis. In this regard, increasing emphasis has been stressed on the utilization of digital computers in modern control theory. Much has been written on employing digital computer control methods for single input systems, but the complexity of systems may require more than this simple approach--that is, for a better control the sensing of many system parameters and inputs as well as their relationships to one another must determine the control law. The facet of control theory requires exploiting multiple input, multiple output techniques. Further, the problem of producing the 'best' compensated system becomes one of satisfying physical restrictions of system parameters as well as digital computer limitations.

Modern trends in engineering systems are toward greater complexity, due mainly to the requirements of complex tasks and the necessity for accuracy. Sophisticated technology involves systems that are described adequately only by numerous variables; thus, these high-order complex systems are responsible for the dichotomy of the academic and industrial attitudes. The naivete" of low-order system textbook orientation must be abondoned, and with the essence
of the classical methods espoused, analysis of large-scale systems made possible with modern methods. The necessity of meeting increasingly stringent requirements on the performance of control systems, the increase in system complexity, and the accessibility of large-scale computers has forced modern theorists to reexamine the problem of interaction of multiple control inputs. A complex system may have many inputs and outputs which may be interrelated in a complicated manner. To analyze such a system, it is essential to reduce the complexity of the mathematical expressions as well as to resort to computer algorithms for the tedious computations.

Many process control systems have multiple inputs and outputs. Generally, there is no assurance that changes in one reference input will affect only one output; thus, the inputs and outputs are not decoupled but interact with one another. Analysis of such interactions of all inputs with all outputs is a difficult task, particularly by classical means. It is for this reason that the investigation and development of a computerized algorithm for compensation of multiple input, multiple output systems with interactions of parameters are so important.

In conventional control theory, generally only the input, output, and error signals are of concern; the design and analysis are developed using transfer functions, together with a variety of classical techniques such as root locus, Nyquist, Bode, etc. The appealing characteristic of conventional control theory is that it is based on the input-output relationships of the system; that is, the transfer function.

The main disadvantage of conventional theory is that, primarily, it is applicable only to linear time-invariant systems having a single input and output. It is difficult to apply to time-varying systems, nonlinear systems except the simplest cases, and to multiple input, multiple output systems. Thus classical techniques are not amenable generally to the design of optimal or adaptive controllers.

With the advent and abundant utilization of digital computers, computer-aided control system design has become a popular research topic. However, most contemporists abandoned the classical techniques and explored the realm of optimal control theory delving in systems described by state variables, i.e., a set of first order differential equations with design objectives described in a cost functional. Although many enlightening methods and results have been evidenced, the weaknesses are inherent. For example, the optimal control law is extremely dependent upon the proposed cost function and in many cases the correct cost function debatable [1]* Furthermore, all states are assumed available for feedback. Even with observer theory to reproduce unmeasured variables, and subsequently allow fewer measurements, the computer storage required is excessive.

The current impression, that in order to utilize computer facilities the control problem must be implemented in state variable form, must be resolved. There is, generally speaking, no substitute for state variable techniques when applied to simple control
*Numbers in square brackets designate referenced items.
systems, but when solving relatively large plants the handiling and storing of state matrices can be unthinkable. Thus if the classical theory can be extended to include modern concepts, as well as computer techniques, then possibly a more effective control tool will evolve. An interesting aspect of this approach is that it clearly shows the return to prominence of the classical frequency domain techniques in modern system analysis.

Literature Survey of Previous Work

In the past, several papers have appeared discussing various approaches to computerized classical design of control systems. Generally, performance specifications are satisfied by frequency response and root locus methods using trial-and-error procedures. According to [2], there are three digital techniques which appear to have merit in this regard: Automatic Frequency Domain Synthesis of Multiloop Control Systems (AUTO), Compensator Improvement Program (CIP), and Computerized Optimization of Elastic Booster Autopilots (COEBRA). In addition to these, developments by Nail on the Eigenvalue Encouragement Technique, [3], as well as Mancini's Computer Aided Control System Design Using Frequency Domain Specifications (CALICO) [4] and Vines' Computer Automated Design of Systems (CADS) [5] are also of interest. Each of these algorithms is summarized, and the disadvantages and limitations are discussed.

Automatic Frequency Domain Synthesis of Multiloop Control Systems (AUTO)

The algorithm AUTO [6], developed at the Aerospace Corporation, was designed to aid in the synthesis of compensation for multiloop, time-invariant control systems exemplified in Figure 1. In this figure, the plant $\mathrm{P}(\mathrm{s})$ is assumed to have fixed characteristics, a single control input, and multiple outputs. With the feedback path broken at α an open-loop transfer function is defined as:

$$
\begin{equation*}
c(s)=C(s) / R(s) \tag{1.1}
\end{equation*}
$$

assuming $R(s)$ is unity for all frequencies $s=j \omega$, then $C(j \omega)$ is the open-loop frequency response.

The philosophy of AUTO is to fit the open-loop frequency response $C(j \omega)$ to the desired open-1oop response $\hat{C}(j \omega)$ by selection of the parameters of the compensators, $G_{1}(s), G_{2}(s), \ldots, G_{M}(s)$. The compensators are varied algebraically by making incremental changes in their parameters. Each compensator is assumed to be a rational function of the form:

$$
\begin{equation*}
G_{k}(s)=\sum_{i=1}^{M} a_{k i}(s)^{i-1} /\left[1+\sum_{i=2}^{N} b_{k i}(s)^{i-1}\right] \tag{1.2}
\end{equation*}
$$

where M and N are chosen by the designer and $a_{k i}$, $b_{k i}$ represent the compensator coefficients. The number of compensators is dictated by the number of plant outputs.

Figure 1. General Configuration for a Single Control Input System.

The measurement of closeness J between the actual response $C(s)$ and desired response $\hat{C}(s)$ is the mean square difference at a set of selected frequency points $\omega_{k}, k=1,2, \ldots, k$, that is

$$
\begin{equation*}
J=\left\|\left(\hat{c}^{*}-c^{*}\right)^{T} \bar{W}^{T} \bar{W}(\hat{c}-c)\right\| \tag{1.3}
\end{equation*}
$$

where the asterisk (*) denotes complex conjugate and

$$
\hat{\mathrm{C}}^{T}=\left[\begin{array}{llll}
\hat{\mathrm{C}}\left(\mathrm{j} \omega_{1}\right) & \hat{\mathrm{C}}\left(j \omega_{2}\right) & \ldots & \hat{\mathrm{C}}\left(j \omega_{\mathrm{K}}\right) \tag{1.4}
\end{array}\right]
$$

$\overline{\mathrm{W}}$ is a diagonal matrix of the form.

$$
\overline{\mathrm{W}}=\left[\begin{array}{cccc}
\mathrm{W} & 0 & \cdots & 0 \tag{1.5}\\
0 & \mathrm{~W} & \cdots & 0 \\
\vdots & & \ddots & \\
0 & 0 & & \mathrm{~W}_{\mathrm{K}}
\end{array}\right]
$$

that is used to assign different weights to the errors of different frequency points. The compensators are designed by varying their coefficients so that J is minimized by a gradient search method. The directional vector along which the search is made is the gradient of J with respect to percentage changes in compensator coefficients; this type of directional vector is used to avoid premature convergence from encountering steep valleys or ridges associated with the function J.

Compensator Improvement Program (CIP)

CIP is a computerized design algorithm for aiding in the compensation synthesis for multiloop, time-invariant control systems
of the form of Figure 1. The basis of this algorithm is that with the feedback loop broken at α, the compensation design is accomplished by satisfying certain frequency response specifications on the open-loop response $C(j \omega) / R(j \omega)$. CIP design specifications include the capability of obtaining gain margins (GM), phase margins (PM), stability margins (SM), and attenuation margins (AM). Both the gain and phase margins have the normal definitions except their measurements in CIP are converted to distances from the $(-1+j 0)$ point in the $G H(j \omega)$ plane. The stability and attenuation margins are defined as follows: [7]

Definition 1

For a closed-loop stable system whose open-loop frequency response is described by $\mathrm{GH}(\mathrm{j} \omega)$, a stability margin (SM) is defined as a relative minima of the real function,

$$
|1.0+G H(j \omega)|
$$

Definition 2

An attenuation margin (AM) of the $G H(j \omega)$ frequency response for a band of frequencies such that $\omega_{1}<\omega<\omega_{2}$ is defined as a relative maxima of the real function, $|G H(j \omega)|^{2}$, when $\omega \varepsilon\left(\omega_{1}, \omega_{2}\right)$.

Gain, phase, and.stability margins establish desirable amounts of phase stabilization; whereas, the attenuation margin is used to insure proper amounts of gain stabilization. CIP was developed with the objective of improving the frequency response from iteration to iteration. Two possible modes of operation are available: the Sum Improved Frequency Response (SIFR), and the Total Improved Frequency Response (TIFR). The user must select one of these modes to control
the amount of the incremental changes made in the compensator parameters in initiating the program. Generally the SIFR mode allows coarser changes than the TIFR mode.

CIP employs the mathematical programming tool the Constraint Improvement Algorithm (CIA). This algorithm possesses the unique capability of producing a directional change vector for the compensator coefficients that insures the existence of a Total and/or Sum Improved Frequency Response.

Computerized Optimization of
 Elastic Booster Autopilots (COEBRA)

COEBRA design is achieved by solving a sequence of constrained optimization problems by minimizing a cost function. The cost function, in terms of frequency response of time domain specifications, is subject to a set of inequality constraints. The frequency response specifications include the classical phase and gain margins; whereas, the angle of attack is included in the time domain specifications.

COEBRA employs the linear programming tool, the Simplex Algorithm, to obtain a solution; whereas, the design problem for which COEBRA was developed is. nonlinear in nature. However, if the cost and constraint function are approximated by a truncated Taylor series expansion, the problem becomes a linear one and a solution is obtained through a parametric programming procedure. . In obtaining the truncated Taylor series expansion a finite difference technique yields the necessary partial derivatives.

Abstract

Eigenvalue Encouragement Technique (POP)

POP, a numerical technique for the iterative design of linear, time-invariant control systems, attempts to design dynamic feedback compensation by affecting the closed-loop eigenvalues in a desirable manner. This technique encourages the eigenvalues to migrate either toward or further into the left half plane, or toward other specified values. This encouragement process is accomplished by solving an unconstrained minimization problem with a selected cost function. The algorithm is based on Danilevskii's method of generating a characteristic polynomial and the assumption that the compensation is dynamic feedback. A unique relationship between a determinant and the partial derivative operation is applied to the system characteristic $|\lambda I-A|$; the result is the partial of the closed-loop eigenvalues with respect to parameters in terms of $2 p(n+1)$ determinants where n is the order of the plant and compensation A matrix, p the compensator order, and λ the eigenvalue. By determinant manipulations the necessary $2 p$ determinants are evaluated by Danilevskii's methods yielding results for all the eigenvalues.

Computer Aided Control System Design Usịng Frequency Domain Specifications

CALICO, the computer-aided compensator design algorithm by Mancini, utilizes the constrained optimization method introduced by M. J. Box. This technique requires the desired open-loop frequency response be specified for discrete frequency points. The minimization routine varies the compensator parameters in such a manner

as to minimize a cost functional based on the difference between the actual and desired frequency response of the compensated system. With the desired response as input, the author incorporates the normal frequency domain specifications such as gain and phase margins into the overall cost functional each time the algorithm evaluates the frequency response of the open-loop system, and thus eliminates the need for specialized computations to determine margin satisfaction.

Computer Automated Design of Systems

The automated digital computer technique by Vines, CADS, is a control system compensator design oriented in the time domain. In order to minimize a specific cost functional and set the free system parameters, the technique requires as input the desired output response and system description. The minimization technique BOXPLX by M. J. Box is employed. To simulate the system to be optimized, the author chose commonly used transfer functions which were reduced to first order linear differential equations. The equations are programmed so that the transfer function blocks can be cascaded by data card input. Several nonlinear transfer blocks are also available. The program simulates the system with known parameters and then allows all free parameters to be fixed by the optimization routine in achieving the desired response.

A Comparison

In summary, each of these algorithms has advantages and limitations. With the exception of COEBRA and POP, these methods completely ignore the possibility of multiple inputs and their interactions with system parameters. Unfortunately, POP and COEBRA have several theoretical and computational limitations.

For example, POP is a numerical technique that attempts to minimize a cost function composed of 'soft' constraints. This method should minimize the cost function, but in a practical sense, (in terms of relative stability, etc.) the final system may not be any better than the original. Further, the practical limitation of computer storage and run time may prove the infeasibility of applying this method to large systems. In fact the run time is approximately proportional to n^{3} where n is the system order including compensation, and systems above 40 th order require more than 128 K words of core storage on a UNIVAC-1108. Another unfortunate obstacle of this technique is the inherent problem of relating frequency domain design specifications such as phase and gain margins to closed-loop pole locations of large systems.

COEBRA minimizes a cost function subject to a set of inequality constraints; the cost function is used to optimize gain and phase margins, rise time, percent overshoot, etc., while the constraints insure that the performance measurements do not degrade from iteration to iteration. The directional vector is determined so as to minimize the cost function and not violate the constraints.

Thus, COEBRA also possesses the property that the final design will not be worse than the initial. COEBRA employs a method of finite differences, to determine partial derivatives. This introduces numerical inaccuracies that jeopardize the practical utility of this program. From a user's view, COEBRA is difficult to enable; it requires a thorough knowledge of the programning techniques for a user to achieve a useful design. COEBRA alṣo requires excessive computer core storage and run time; on the UNIVAC-1108, 66 K words of storage must be available; whereas, both AUTO and CIP can be executed in less than 32 K words for systems of equivalent order [2]. Perhaps it was in this regard that the author found it necessary to restrict the design to no more than eight bending and/or slosh modes. AUTO assumes a single control input plant described by frequency response information in the form of complex numbers. Although AUTO'appears easy to use, the judicious selection of weighting constants for every frequency component is a designer's nightmare; in some instances, no choice of constants will yield the desired design specifications. Like POP, AUTO seeks to minimize a cost function composed of soft constraints by a gradient optimization technique; the weighted mean square difference between the actual and desired frequency response indicates the measure of closeness to the desired reṣults.

CADS, as a time domain method, accepts only first order differential equations in describing the compensation. The computer time and storage are a function of the system order and the search area on the upper and lower bounds of the system parameters. The
routine requires a good guess on the original parameters in order to obtain a workable solution. According to Vines, the optimization routine BOXPLX may continue to search for a reduced cost functional to within some significant digit even though a practical solution already has been determined.

CALICO, although frequency domain oriented, is similar to CADS in its applicability to single input-output systems and its use of the BOXPLX optimization routine. Again the technique is cursed with an optimization method that becomes more inefficient and time consuming as the system parameters increase.

CIP has the limitation of applicability to a single input, multiple output system. In addition; CIP requires much data in the form of frequency response information. Unlike the aforementioned method, however, CIP is not an optimization technique and does not attempt to maximize or minimize a cost function; rather, CIP searches for a 'suboptimal' feasible solution by satisfying a set of strict constraints that measure the performance of a design. The computer run time is proportional to the number of frequency points used to describe the plant. If properly used, CIP results in a final design that will be better than the initial.

CIP has proven its merit in the service of space vehicle control according to NASA contract reports $[7,8]$. If CIP could be extended to handle designs for plants with multiple inputs and multiple outputs, it obviously would be superior to any of the aforementioned methods. Further, the inclusion of a multiple input,
multiple output capability would improve greatly the utility of this technique as a design aid.

The Research Area

The objective of this research is to achieve compensation for a multiple input, multiple output control system by developing an algorithm to facilitate fast and practical compensator design with maximum computer economy while minimizing designer effort. The relative stability method of the Constraint Improvement Algorithm [7] by McDaniel and Mitchell has been chosen to determine system performance specifications by frequency domain techniques. The work presented in this exposition develops the theory and associated modifications necessary to extend the CIP type algorithm to the multivariable control system. With permission of the author of the original CIP [7] this program will now be known mnemotechnically as CIP, since much of the philosophy and many of the techniques of the original algorithm have been retained and extended.

CHAPTER II

DESCRIPTION OF ṪHE DESIGN ALGORITHM

An Overview of the Design Prob1em

Figure 2 is a schematic representation of a multivariable, linear, time-invariant feedback control system. This multivariable system may be viewed as n coupled feedback systems-mone for each element of the input vector. The loop transfer function for the k th system is obtained by opening the feedback'path at α_{k}, and then determining the response $C_{k}(s) / R_{k}(s)$ with all other input R^{\prime} 's set to zero.

With this view of the multivariable feedback system, the designer is faced with the problem of synthesizing controllers of n interacting systems.-Using classical feedback theory a controller may be designed so that the open-loop frequency response satisfies a set of frequency response design objectives. In theory this approach easily is extended to the multivariable system. However, in this case simultaneous designs of the controllers must be made so that the n open-1oop frequency responses satisfy n sets of design objectives. The simultaneity of the designs is required because of the implicit functional relationship between the design objectives of the individual systems; e.g., a controller may affect the openloop frequency response of one system in a desirable manner, while adversely affecting the response of another system.

Figure 2. A Multivariable Control System. .

Using classical frequency response techniques, the design of a control system to satisiy a few objectives can be accomplished with manual calculations. However, as the complexity of the system and the number of design objectives increase the development of the controller requires the aid of a high-speed digital computer.

In order to use efficiently the digital computer in a design capacity it is necessary to have a design algorithm that is amenable to digital computation; in general, such algorithms are iterative in nature. The Compensation Improvement Program [7] is an algorithm of this type that has been developed to facilitate in the desjgn of controllers for the class of systems of Figure 1. With the loop broken at α, the algorithm determines the controllers $G_{j}(s)$, where j is the controller index $(j=1,2, \ldots, M)$, so that the open-loop frequency response, $C(s) / R(s)$, satisfies specified requirements. In this study a design algorithm is developed to facilitate the design of controllers for multivariable feedback systems.

The Algorithm Design Philosophy

In order to accomplish logically the design algorithm the computational flow diagram of Figure 3 has been developed. The description of the multivariable configuration requires discrete frequency data from each input to each output; whereas, the initial compensation for each controller input is described by a matrix of transfer functions. With this information the open-loop frequency response is obtained for each of the n coupled systems by determining the associated subsystem response with one loop open at a

Figure 3. Computational Flow Diagram of the CIP Algorithm.
time. Likewise, for each subsystem, a set of critical points, that is; frequencies at which margins of stability or attenuation occur, is determined. It is possible to demand any number of margin requirements for gain, phase, stability, and attenuation radii. Further, these margins can be manipulated so as to make the constraints or specifications frequency dependent. An active list of radii requirements is then prepared to alleviate any margins already satisfied. From the open-loop frequency response data and the compensator coefficients, the gradient vectors of the active margins for each subsystem are calculated. Using these gradient vectors, a directional vector that can yield improvements in all active margins is determined. The free compensator coefficients are varied then in accordance with this directional vector. From this design the total response is checked to determine any margin radii not satisfied, and the process continues in an iterative manner until all specifications are met or user control, such as maximum computer time or iterations, forces a stop.

Theoretical Concepts Associated with the Algorithm

Calculation of Compensated Open-loop Frequency Response

In order to develop a CIP type algorithm for designing the controller for the multivariable system, it is necessary to have equations for calculating the open-loop frequency response for each subsystem and equations for calculating the change in each objective function (performance measurements) with respect to variations in the free parameters of the compensation. First attention is
focused on the calculation of open-loop frequency response information. From Figure 4 the output frequency response [C(s)] is obtainable:

$$
\begin{equation*}
[C(s)]=[G(s)][P(s)][E(s)] \tag{2.1}
\end{equation*}
$$

where the error or actuating function [E(s)] yields

$$
\begin{equation*}
[E(s)]=[R(s)]-[H(s)][C(s)] ; \tag{2.2}
\end{equation*}
$$

the notation is defined in the Symbols table. Substituting equation (2.2) into (2.1) and solving for [C(s)] yields the output relation,

$$
\begin{equation*}
[\mathrm{C}(\mathrm{~s})]=[\mathrm{G}(\mathrm{~s})][\mathrm{P}(\mathrm{~s})]\{\mathrm{I}+[\mathrm{H}(\mathrm{~s})][\mathrm{G}(\mathrm{~s})][\mathrm{P}(\mathrm{~s})]\}^{-1}[\mathrm{R}(\mathrm{~s})] \tag{2.3}
\end{equation*}
$$

Equation (2.3) gives the closed-loop output response in terms of the input vector. Suppose that the k th diagonal element of $[H(s)]$ is set to zero and all the elements of $[R(s)]$ are nulled except the k th element which is set to unity; the result is the frequency response between the kth input and the outputs when the kth loop is open. To simplify notation, define

$$
\begin{equation*}
[\mathrm{V}(\mathrm{~s})] \triangleq\{\mathrm{I}+[\mathrm{H}(\mathrm{~s})][\mathrm{G}(\mathrm{~s})][\mathrm{P}(\mathrm{~s})]\}^{-1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
[\mathrm{U}(\mathrm{~s})] \triangleq[\mathrm{G}(\mathrm{~s})][\mathrm{P}(\mathrm{~s})] \tag{2.5}
\end{equation*}
$$

Hence the open-loop complex frequency response of the kth system is

$$
\begin{equation*}
\frac{\mathrm{c}_{\mathrm{k}}(\mathrm{~s})}{\mathrm{R}_{\mathrm{k}}(\mathrm{~s})}=\underline{\underline{u}}^{\mathrm{k}}(\mathrm{~s}) \cdot \underline{\underline{v}}_{\mathrm{k}}(\mathrm{~s}) \tag{2.6}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{R}(\mathrm{~s}) & \text { IS THE } N \times 1 \text { INPUT VECTOR } \\
\mathrm{E}(\mathrm{~s}) & \text { IS THE } N \times 1 \text { ERROR VECTOR } \\
\mathrm{C}(\mathrm{~s}) & \text { IS THE } N \times 1 \text { OUTPUT VECTOR } \\
\mathrm{P}(\mathrm{~s}) & \text { IS THE } \mathrm{M} \times \mathrm{N} \text { MATRIX TRANSFER } \\
& \text { FUNCTION DESCRIBING THE PLANT } \\
\mathrm{G}(\mathrm{~s}) & \text { IS THE } N \times M \text { MATRIX TRANSFER } \\
& \text { FUNCTION DESCRIBING THE CONTROL } \\
& \text { LAW AND CASCADED COMPENSATION } \\
\mathrm{H}(\mathrm{~s}) & \text { IS AN } N \times N \text { UNITY MATRIX }
\end{array}
$$

Figure 4. Vector Representation of the Multivariable Control System.
where $\underline{u}^{k}(s)$ and $\underline{v}_{k}(s)$ are, respectively, the kth row of $[U(s)]$ and the k th column of $[\mathrm{V}(\mathrm{s})]$ with the k th diagonal element of $[\mathrm{H}(\mathrm{s})]$ set to zero. By fixing the proper diagonal element of $[\mathrm{H}(\mathrm{s})]$ to zero, it is obvious how equations (2.4), (2.5), and (2.6) can be used to elvaluate the open-loop frequency response for each kth system.

Evaluation of the Critical Frequencies

Next attention is focused on the determination of the critical frequencies with respect to the design objectives. In CIP the design is accomplished by requiring the open-loop frequency response to satisfy certain specifications. These design specifications are converted to distances between certain critical points of the openloop frequency response and certain points in the corresponding complex plane where $s=j \omega$. The typical objective function for the kth open-loop system is

$$
\begin{equation*}
d=\left\{\left[A+C_{k}(j \omega)\right]\left[A+C_{k}(j \omega)\right] *\right\}^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

where A is the point in the complex plane from which the specification is measured; e.g., for stability margins A is the ($-1+j 0$) point. In equation (2.7), the response $C_{k}(j \omega)$ is calculated from (2.6) with $R_{k}(j \omega)$ set equal to unity.

Calculation of the Partial Vectors

Now attention is directed to the calculation of the change in the design objectives with respect to the free parameters of the
controller. With this objective in mind, the partial derivative of the distance d with respect to some parameter w is

$$
\begin{equation*}
\frac{\partial d}{\partial w}=\frac{1}{2}\left\{\left[A+C_{k}(j \omega)\right] \frac{\partial C_{k}^{*}(j \omega)}{\partial w}+\frac{\partial C_{k}(j \omega)}{\partial w}\left[A+C_{k}(j \omega)\right]^{*}\right\} \div d \tag{2.8}
\end{equation*}
$$

Equation (2.8) can be rewritten as

$$
\begin{equation*}
\frac{\partial d}{\partial w}=\operatorname{Re}\left\{\left[A+C_{k}(j \omega)\right]^{*} \frac{\partial C_{k}(j \omega)}{\partial w}\right\} \div d \tag{2.9}
\end{equation*}
$$

Evaluation of (2.9) depends on determining accurately the partial term, $\partial C_{k}(j \omega) / \partial w$. Using the chain rule this becomes

$$
\begin{equation*}
\frac{\partial C_{k}(j \omega)}{\partial w}=\frac{\partial C_{k}(j \omega)}{\partial G_{i j}} \cdot \frac{\partial G_{i j}}{\partial w} \tag{2.10}
\end{equation*}
$$

where $G_{i j}$ is the element of the controller $[G(s)]$ in which the free parameter w appears with $i=1,2, \ldots, N$ system outputs and $j=1,2, \ldots, M$ system states sensed.

The necessary equations for evaluating the first term in (2.10) are derived in the sequel. The partial of (2.3) with respect to the controller element $G_{i j}$ gives

$$
\begin{align*}
\frac{\partial[C(s)]}{\partial G_{i j}}= & -[G(s)][P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[H(s)] \\
& \frac{\partial[G(s)]}{\partial G_{j j}}[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)]+ \\
& \frac{\partial[G(s)]}{\partial G_{i j}}[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)] \tag{2.11}
\end{align*}
$$

Then, the $\partial C_{k}(s) / \partial G_{i j}$ is the kth element of (2.11) with the kth
diagonal element of $[H(s)]$ set to zero, and all the elements of $[R(s)]$ set to zero except the kth which is set to unity. In (2.11) the partial term $\partial[G(s)] / \partial G_{i j}$ is $a_{i} z e r o$ matrix except for the ($i j$) th element which is unity.

Next consideration is given to the evaluation of the second term in equation (2.10). It is assumed that the (ij) th element of [$G(s)]$ is composed of a cascaded arrangement of transfer functions, i.e.,

$$
\begin{equation*}
G_{i j}(s)=\prod_{k=1}^{K} G_{i j k}(s) \tag{2.12}
\end{equation*}
$$

where K is the number of cascaded elements. The lth cascaded element of the (ij)th element of [G(s)] has the general form

$$
\begin{equation*}
G_{i j \ell}(s)=\frac{\sum_{m=0}^{M} x_{i j \ell m} s^{m}}{\sum_{n=0}^{N} y_{i j \ell n} s^{n}} \tag{2.13}
\end{equation*}
$$

Then, the free parameters of this element are the $x^{\prime} s$ and $y^{\prime} s$. If w in (2.10) is the pth numerator coefficient of (2.13), then

$$
\begin{equation*}
\frac{\partial G_{i j}(s)}{\partial x_{i j \ell p}}=\prod_{\substack{k=1 \\ k \neq \ell \ell}}^{K} G_{i j k}(s) \frac{+s^{p}}{\sum_{n=0}^{N} y_{i j \ell n^{\prime}} s^{n}} \tag{2.14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial \dot{G}_{i j}(s)}{\partial x_{i j \ell p}}=G_{i j}(s) \frac{+s^{p}}{\sum_{m=0}^{M} x_{i j \ell m} s^{n}} \tag{2.15}
\end{equation*}
$$

Similarly if w in (2.10) is the pth denominator coefficient of (2.13), then
or

$$
\begin{equation*}
\frac{\partial G_{i j}(s)}{\partial y_{i j l p}}=G_{i j}(s) \frac{-s^{p}}{\left(\sum_{n=0}^{N} y_{i j \ell n} s^{n}\right)} \tag{2,17}
\end{equation*}
$$

By appropriately using equations (2.3), (2.9), (2.10), (2.12), (2.15) and (2.17), the first order change of any CIP objective function with respect to the free parameters of the controller can be calculated.

DESCRIPTION OF THE COMPUTATIONAL FLOW DIAGRAM
 Implementation of the Algorithm

The algorithm implementation evolved with the following objectives in mind.

1. Any linear, time-invariant system structure should be acceptable.
2. Numerical problems' should not restrict the method to low order systems.
3. Computational requirements should be reasonable for high order systems.
4. Monitoring of compensation at desired iteration levels should be possible.
5. Partial derivatives should be exact.

A Synopsis of the Algorithm
Keying on the aforementioned goals, possibilities were weighed to determine the most effective methods of implementing and computer coding the algorithm. The following is a description of the principles and computational logic involved in producing an executable version of the compensator improvement program for the multivariable control system of Figure 2. In this sequel the- logic flow diagram
of the Continuance Criterion, (D) The Determination of the Gradient Vectors Corresponding to the Active Constraints, and (E) Calculation of the Directional Vector and the Compensation Enhancement. For a detailed explanation of the particular subroutines used, refer to alphabetical listing in Appendix A. The Fortran IV computer code is listed alphabetically in Appendix B.

Section A: Data Input

Referring to the schematic diagram of Figure 2, recall that the multivariable system may be viewed as n coupled feedback systems-one for each element of the input vector. With this view, the loop transfer function of the kth system is obtainable by opening the feedback path at α_{k} and determining the response $C_{k}(s) / R_{k}(s)$ with all input R 's set to zero except the kth element. Thus the variable k in the computational flow diagram of Figure 3 is defined as the respective subsystem in accordance with the corresponding element of the input vector.

The input description of the multivariable configuration requires discrete frequency data from each input to each output in describing the plant system; whereas, the initial compensation for each controller is described by a matrix of transfer functions. With this information the open-loop frequency response is obtained for each of the n coupled systems. Likewise, for each subsystem, a set of critical points, that is, frequencies at which margins of stability or attenuation occur, is determined. Hence, the input routine requires data of four types as shown in Table 1 and clarified in the following discussion.

Table 1. Outline of CIP Data

1. Iteration Control
a. Mode, identification code
b. Start, stop, print iterations
c. Maximum, minimum step sizes

Etc.
2. Design Specifications
a. Desired Stability and Attenuation Radii
b. Frequency Ranges over which searches for critical points are to be made
3. Description of Plant
a. Number of Control Inputs
b. Number of Outputs
c. Discrete frequency response data
4. Description of Compensation
a. Gain Constant in each channel
b. Number of Subcompensators in each channel
c. Coefficients for each subcompensator in first and second order factors only
d. Constraints to be placed on the coefficients

I. Iteration Control

First, user control parameters are entered; these include the extremum step sizes to be taken on iterations, maximum iterations for convergence, designation of iterations to be printed, user identification code, etc. Here also the user must specify the mode used in the program to determine when an iteration has been completed. In particular, the mode designates which continuance criterion must be used to determine whether the trial design at the (i +1) th iteration is an improvement in comparison to the results at the ith iteration. One of two modes must be chosen:
i. Total Improved Frequency Response Mode (TIFR) requires that from iteration to iteration no unsatisfied objectives or design specifications are allowed to degrade and insures improvement in at least one.
ii. Sum Improved Frequency Response Mode (SIFR) requires that the sum improvement exceed the sum degradation from iteration to iteration.

It is obvious that the TIFR mode produces a more stringent continuance criterion on the compensation.

2. Design Specifications

The second portion of the input data designates the design specifications for achieving relative stability and relative attenuation. In particular, the mathematical formulation of the design problem is to determine the free parameters of the compensators such that the objective functions satisfy a set of design specifications, i.e., gain, phase, stability and attenuation
margins. Mathematically, if. a total of n critical frequency response points are chosen, the problem can be expressed as a strict constraint mathematical programing problem of the form:

Determine the \underline{x}^{T}
such that the constraints $g_{i}\left(\underline{x}^{T}\right) \geq b_{i}, i=1,2, \ldots, n$;
where x represents the free compensator parameters, b_{i} represents the design specifications, and $g_{i}\left(\underline{x}^{T}\right)$ contains the objective functions, that is, frequency response limitations and constraints. Thus the general idea is to change the compensator coefficients so that each constraint comes closer to being satisfied at each iteration: Other methods of obtaining the design objectives could be implemented; however, from a practical point of view the method of the strict constraint problem is particularly appealing in producing a change vector for the compensator coefficients that insures the existence of a Total and/or Sum Improved Response. Furthermore, this method allows the margin radii specifications to become frequency dependent. Conceivably, it is desirable that regions of the frequency response be various distances from the $(-1+j 0)$ point in the $G H(j \omega)$ plane while other regions be constrained to be greater or less than limitations with respect to the origin of the $G H(j \omega)$ plane. Thus in general a frequency response is desired to have some basic shape which can be translated with respect to frequency and not constrained to match exactly a desired. frequency response.

3. Description of Plant

The multivariable configuration of Figure 2 may be described in two parts, the plant and the controller. First the description of the uncompensated plant requires discrete frequency response data between each input and each output channel. The choice of the discrete data description for the plant was made to avoid computational difficulties that might be encountered in evaluating high order transfer functions and to conserve computing time in the iterative process of CIP. Furthermore, discrete frequency response data is often the best information available for describing the system.

4. Description of Compensation

Secondly, the initial compensation or controller design is necessary for each control input. Again recall the objective of this work is not to develop a self-contained, computer-aided design algorithm but to provide the control engineer with a design aid. In this regard, it is assumed that the designer knows the control law necessary to enhance his design objectives. Normally the engineer uses s-domain rational functions in investigating designs, thus for simplicity, the compensation elements are described by transfer, functions in the form of cascaded first and second order factors, that is,

$$
\begin{equation*}
G(s)=(G A I N) \frac{\prod_{i=1}^{N 1}\left(Z A_{i}+Z B_{i} s\right) \prod_{j=1}^{N 2}\left(Z C_{j}+Z D_{j} s+Z E_{j} s^{2}\right)}{\prod_{i=1}^{M 1}\left(P A_{i}+P B_{i} s\right) \prod_{j=1}^{N}\left(P C_{j}+P D_{j} s+P E_{j} s^{2}\right)} . \tag{3.2}
\end{equation*}
$$

Section B: Frequency Response Manipulations

Figure 5 gives a detailed expansion of the logic of Section B in Figure 3. Note that Section B is composed of four major routines in determining, the frequency response: Delete Points, Add Points, Calculation of the Closed-Loop Frequency Response, Calcu1ation of Critical Points.

The Delete Points routine is designed to remove any frequency points and corresponding response terms no longer of major concern which might have been added for accuracy on previous iterations; however, the original data are always retained. The routine is designed to save computer storage as well as' computer time in response calculations and in scanning for margins. This algorithm is coded in the subprogram DELETE [10].

The Calculation of the Closed-Loop Frequency Response is performed by implementing the equations developed in Section 3 of Chapter II. In particular, the closed-loop output vector [C(s)] is determined by the relation,

$$
\begin{equation*}
[C(s)]=[G(s)][P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)] \tag{3.3}
\end{equation*}
$$

Equation (3.3) gives the closed-loop output vector in terms of the input vector. Based on the theoretical concepts of Chapter II, suppose that the kth diagonal element of $[H(s)]$ is set to zero and all the elements of $[R(s)]$ are nulled except the k th element which is set to unity; the result is the frequency response between the kth input and the outputs when the kth loop is open. Utilizing the aforementioned notation,

Figure 5. Logic Diagram Representing the Frequency Response Manipulations of Section B.

$$
\begin{equation*}
[V(s)] \triangleq\{I+[H(s)][G(s)][P(s)]\}^{-1} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
[\mathrm{U}(\mathrm{~s})] \triangleq[\mathrm{G}(\mathrm{~s})][\mathrm{P}(\mathrm{~s})] \tag{3.5}
\end{equation*}
$$

The open-loop frequency response of the kth system is

$$
\begin{equation*}
\frac{c_{k}(s)}{R_{k}(s)}=\underline{u}^{k}(s) \underline{v}_{k}(s) \tag{3.6}
\end{equation*}
$$

where $\underline{u}^{k}(s)$ and $\underline{v}_{k}(s)$ are, respectively, the kth row of [U(s)]. and kth column of $[\mathrm{V}(\mathrm{s})]$. By setting the proper diagonal element of $[H(s)]$ to zero, equations (3.4), (3.5), and (3.6) can be used to evaluate the frequency response of each system.

This algorithm is coded in the main program using two subroutines: EVAL. and CRT. The subprogram EVAL evaluates the controller at the specified frequencies with the aid of the program POLEV, a polynomial evaluation routine. EVAL then determines the product of the controller response and the plant response, that is, [G(s)] • [P(s)]. With this transfer relation the subprogram CRT determines the total response [$C(s)$] and selects the open-loop frequency response of the kth system.

The Determination of the Critical Points is designed to yield the critical points of the open-loop frequency response and to ascertain whether they satisfy certain design specifications for achieving the relative stability and relative attenuation margins. Recall these design specifications are expressed mathematically as the distances between certain critical points of the frequency
response and particular points in the corresponding complex plane. The typical objective function for the kth open-loop system is

$$
\begin{equation*}
d=\left\{\left[A+C_{k}(j \omega)\right]\left[A+C_{k}(j \omega)\right]^{*}\right\}^{\frac{1}{2}} \tag{3.7}
\end{equation*}
$$

where A is the point in the complex plane from which the specification is measured; for stability, gain, and phase margins A is the $(-1+j 0)$ point; for attenuation margins, the $(0+j 0)$ point is chosen. The design specifications include subprograms for determining the gain, phase, stability, and attenuation margins.

The subprogram to Add Points is designed to provide more data around each of the critical frequency points, thereby, yielding a more exact margin value without the input of excessive data and the consequent increase in storage. This algorithm is encoded as ADDPTS and uses an interpolate routine INTER, as well as the aforementioned EVAL and CRT routines to update the frequency response for each added data point. .

As indicated in Figure 5, the frequency response and critical margins are calculated for each k th system adding and deleting frequency points as necessary.

Section C: Evaluation of the Continuance Criterion
Figure 6 represents the logic decision blocks of Section C in Figure 3. These decision blocks are encoded in the main program and are designed to force the program into the specified continuance criterion when an iteration has been completed. Recall that the continuance criterion mode must be specified by the user as input

Figure 6. Logic Diagram Representing the
Continuance Criterion of Section C.
data to determine whether the trial design at the $(i+1)$ th iteration is an improvement in comparison to the results of the ith iteration. The two modes available, the TIFR mode and the SIFR mode, are as defined in Section A.

Note that for the first iteration the mode block is bypassed thereby assuming that an improved solution has occurred and allowing the program to continue to the determination of the partial vectors.

If the SIFR/TIFR condition for the current iteration is satisfied the program checks user control data to decide whether the maximum iteration condition has been exceeded. If the last. iteration has been reached the program sets a stop condition which prohibits further manipulations of the active constraints and partial vectors. Assuming the maximum iteration code has not been met, the main program directs control to Section D.

Now if the SIFR/TIFR criterion has not been met, the program interprets this condition to mean that the change in the compensator coefficients was too large and control proceeds to decrease the step size of the previous iteration in an attempt to force an improved solution.

Section D: Determination of the Gradient Vectors

Figure 7-is an expanded view of Block D of Figure 3; Section D is concerned with the determination of the active constraints, that is, the margins which do not satisfy the required design specifications, and their relation in evaluating the partial vectors.

The selection of active constraints is coded within the main program. CIP checks to determine which of the specified stability

Figure 7. Logic Diagram Representing the Calculation of the Gradient Vectors of Section D.
and attenuation margins do not satisfy the margin design specifications entered by the user as input data. As previously noted, it is possible to demand any combination of margin requirements as gain, phase, stability, and attenuation radii. These margins can be manipulated so as to make the specifications or constraints frequency dependent. A list of the active radii requirements, margins, and corresponding frequencies is then prepared to alleviate any margins already satisfied. The program checks for any duplications in margins, in which case retaining only the first such critical point found.

The second objective of Section D is the calculation of the partial vectors as described in Section 3 of Chapter II. Recall that the partial vectors represent the change in the design objectives with respect to the free parameters, that is, the compensator coefficients of the controller. Thus the partial derivative of the objective function d with respect to some parameter w can be expressed as

$$
\begin{equation*}
\frac{\partial d}{\partial w}=\operatorname{Re}\left\{\left[A+c_{k}(j \omega)\right]^{*} \frac{c_{k}(j \omega)}{\partial w}\right\} \div d \tag{3,8}
\end{equation*}
$$

Accordingly, the partial term $\partial C_{k}(j \omega) / \partial w$ can be expanded by the chain rule as

$$
\begin{equation*}
\frac{\partial C_{k}(j \omega)}{\partial w}=\frac{\partial C_{k}(j \omega)}{\partial G_{i j}} \cdot \frac{\partial G_{i j}}{\partial w} \tag{3.9}
\end{equation*}
$$

where $G_{i j}$ is the element of the controller $[G(s)]$ in which the free parameter w appears.

Evaluation of the first term in (3.9) yields the relation

$$
\begin{align*}
\frac{\partial[C(s)]}{\partial G_{i j}}= & -[G(s)][P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[H(s)] \cdot \\
& \frac{\partial[G(s)]}{\partial G_{i j}}[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)]+ \\
& \frac{\partial[G(s)]}{\partial G_{i j}}[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)] \tag{3.10}
\end{align*}
$$

Then, $\partial C_{k}(s) / \partial G_{i j}$ is the kth element of (3.10) with the kth diagonal element of $[H(s)]$ set to zero, and all the elements of $[R(s)]$ set to zero except the k th which is set to unity. In (3.10) $\partial[G(s)] / \partial G_{i j}$ is a zero matrix except for the (ij)th element which is unity.

Evaluation of the second partial term in equation (3.9.) is acquired by assuming that the (ij)th element of the compensator matrix [G(s)] is composed of a cascaded-arrangement of transfer functions, i.e.,

$$
\begin{equation*}
G_{i j}(s)=\prod_{k=1}^{K} G_{i j k}(s) \tag{3.11}
\end{equation*}
$$

where K represents the number of cascaded elements. Thus the lth cascaded element of the (ij)th compensator has the general form

$$
\begin{equation*}
G_{i j \ell}(s)=\frac{\sum_{m=0}^{M} x_{i j \ell m} s^{m}}{\sum_{n=0}^{N} y_{i j \ell n} s^{n}} \tag{3.12}
\end{equation*}
$$

where the free parameters of this element are the $x^{\prime} s$ and $y^{\prime} s$.

Assuming the parameter w in (3.9) is the pth numerator coefficient in (3.12), then the following expression is obtained:

$$
\begin{equation*}
\frac{\partial G_{i j}(s)}{\partial x_{i j \ell p}}=G_{i j}(s) \frac{+s^{p}}{\left(\sum_{m=0}^{M} x_{i j \ell m} s^{n}\right)} \tag{3.13}
\end{equation*}
$$

Similarly, letting w represent the pth denominator coefficient in equation (3.9), then

$$
\begin{equation*}
\frac{\partial G_{i j}(s)}{\partial y_{i j l p}}=G_{i j}(s) \frac{-s^{p}}{\left(\sum_{n=0}^{N} y_{i j \ell n^{n}} s^{n}\right)} \tag{3.14}
\end{equation*}
$$

Thus equations (3.10), (3.13), and (3.14) can be used effectiveIy to determine the first order change of any CIP objective function with respect to the free parameters of the controller.

As indicated by the decision block, the partial vector of each system is tabulated and stored in an orderly array for later use in determining the directional vector in Section E. The partial vector routine is coded in the subprogram PARTAL in conjunction with the frequency response subroutine CRT; subroutine CRT determines the partial term $\partial C_{k}(j \omega) / \partial G_{i j}$ in equation (3.9).

Section E: Calculation of the Directional Vector and

Compensation Enhancement

Of major significance in Section E is the manipulation of the system partial vectors in obtaining a directional vector using the constraint improvement algorithm. (See Figure 8.)

Figure 8. Logic Diagram Representing the Calculation of the Directional Vector and Corresponding Compensator Enhancement of Section E.

First the decision block of Section E tests to ascertain whether the stop condition has been set. If so, the output routine OUTPT is called; otherwise, the main program determines whether the design specifications have been met and calls the output routine if necessary. Assuming the design objectives are not satisfied, the program checks' user data to determine whether an output is desired for the particular iteration. The directional vector then is calculated with the aid of the Constraint Improvement Algorithm [7] in the subprogram DIRVEC. This subprogram also checks for routine failure yielding a stop command. The subprograms MATMUL and MATINV are auxiliary routines to DIRVEC for matrix multiplication and inversion, respectively.

In Figure 8, after calculating the directional vector and assuming the CIA did not fail, CIP investigates the user option of constraining the poles and zeros of compensation to lie within a specified damping ratio sector. By limiting the compensation to first and second order factors, the complexity of constraining the compensation poles and zeros to lie within a sector defined by constant damping ratio lines as shown in Figure 9 is reduced greatly. Hence the next step is the determination of the directions of movement of the compensator poles and zeros on the specified zeta boundaries. In order to avoid a zeta violation, the directions of these poles and zeros must. be along the boundaries or into the defined sector. If with the present directional vector the movements of these poles and zeros are in the wrong directions, judiciously selected terms in the partial vectors are nulled and the

$\begin{array}{llr}\text { Figure 9. } & \text { s-Plane Configuratior } & \text { ector } \\ & \text { of Desirable Compensa } & \text { s and } \\ & \text { Typical Pole Location } & \\ & \text { System. } & \end{array}$
directional vector is recomputed. This process is continued until the directions of movement of all compensation poles and zeros on the boundaries do not result in a zeta violation. The checking of the directions of movement of these poles and zeros and the setting of the elements of the partial vectors to zero is accomplished by the subprogram XCHECK. This routine assures the existence of a nonzero step size that will not produce a zeta violation by poles and zeros on the boundaries.

Referring to Figure 8, after an acceptable directional vector has been established in accordance with XCHECK, a step size is selected, and in conjunction with this directional vector, the individual compensator coefficients are effectively augmented. At this point, a violation in the zeta constraints can occur from an inappropriate selection of the step size, i.e., usually if the step size is too large. Thus, the zeta constraints are checked. If a violation occurs, the maximum step size that will not produce a violation is computed and the compensator coefficients are reincremented; otherwise, the program recycles to Section B in Figure 3. The check for zeta violations, as well as the computation of a maximum acceptable step size, is accomplished by the subroutine YCHECK. The theory underlying this routine along with additional usage information is presented in Appendix A.

INVESTIGATIONS AND EXAMPLES

In order to illustrate the practical utility of the multivariable Compensator Improvement Program, the improvements of the compensators for space related examples are presented. This by no means limits the scope of the work to space oriented control systems, but rather provides large system problems which have been investigated by other means. In particular, three examples are discussed: (1) a dual input, dual output system with uncoupled characteristics; (2) a dual input, dual output system with coupling; (3) a dual input, four output system exhibiting coupled characteristics.

Uncoupled Dual Input, Dual Output System

In this example the system under consideration is similar to that of Figure 2 with $M=2$ controller inputs or measured states, and $\mathrm{N}=2$ controller outputs. Figure 10 shows the actual subsystem under investigation and is representative of the attitude control system for a finned launch vehicle at a specified flight time following launch [11]. Each subsystem has plant dynamics $C_{k}(s) / R_{k}(s)$. described by the uncompensated frequency response plot of Figure 11 where k represents the number of controller inputs and hence the number of subsystems; k equals two in this example. Table 2 exhibits the twenty-eight discrete frequency points chosen to describe the open-loop response of each subsystem. The compensation

Figure 10. Block Diagram Representing Each Subsystem of the Finned Vehicle Example.

Table 2. Frequency Response Input Data Describing the Plant in the Finned Vehicle Example.

Data Points	Complex RE Rrequency	IM[s]	Uncompensated RE[P]	Plant Response IM[P]
1	0.000	0.100	-69.6000	54.9000
2	0.000	0.132	-67.3000	36.6000
3	0.000	0.178	-63.3000	20.8000
4	0.000	0.240	-57.2000	8.9000
5	0.000	0.347	-46.9600	-0.5890
6	0.000	0.501	-34.8000	-4.3200
7	0.000	0.646	-26.6000	-4.3300
8	0.000	1.230	-10.8800	-1.5220
9	0.000	2.000	-4.7100	-0.3060
10	0.100	2.800	-2.4800	-0.1840
11	0.200	3.600	-1.5100	-0.1020
12	0.250	4.000	-1.2200	-0.0750
13	0.250	4.921	-0.8079	0.0018
14	0.250	6.000	-0.5369	0.0340
15	0.200	6.400	-0.4690	0.0469
16	0.100	7.200	-0.3630	0.0603
17	0.000	8.000	-0.2870	0.0645
18	0.000	10.071	-0.1666	0.0478
19	0.000	12.400	-0.0956	0.0309
20	0.000	15.600	-0.0402	0.0013
21	0.000	18.327	-0.5180	-0.1090
22	0.000	19.191	-0.1924	-0.0525
23	0.000	19.638	-0.1677	0.0249
24	0.000	20.563	-0.0969	0.0534
25	0.000	30.415	-0.0139	0.0182
26	0.000	40.095	-0.0047	0.0092
27	0.000	60.686	-0.0006	0.0031
28	0.000	100.000	-0.0001	0.0007

matrix consists of identical compensators in the diagonal elements, i.e.,

$$
\begin{equation*}
G_{11}(s)=G_{22}(s)=\frac{(1+10 s)(5+1.25 s)}{(1+11 s)(5+1.00 s)} \tag{4.1}
\end{equation*}
$$

whereas, the off-diagonal terms are chosen as zero to inhibit any coupling terms.

It is desired to modify the compensators, $G_{11}(s)$ and $G_{22}(s)$, so that the closed-loop step response of each subsystem reasonably is damped and "ringing" caused by the low-damped high frequency modes is negligible. Further, the DC gain of each compensator is chosen so that the magnitudes of the steady-state errors to a velocity input are less than 0.15 . These specifications are satisfactorily achieved by requiring that
(1) all $\mathrm{SM}^{\prime} \mathrm{s} \geqq 0.5$ when $0 \leqq \omega \leqq 16.0$,
(2) all AM's $\leqq 0.1$ when $16 \leqq \omega \leqq 100$,
and (3) the DC gain of the compensator is greater than 26.67.

After 31 iterations, approximately 36 seconds of CPU time on a Univac 1108 Computer, the design compensation is obtained as

$$
\begin{equation*}
G_{11}(s)=G_{22}(s)=\frac{(1.0+1.60084 \mathrm{~s})(5.0+5.57314 \mathrm{~s})}{(1.0+16.3982 \mathrm{~s})(5.0+1.14051 \mathrm{~s})} . \tag{4.3}
\end{equation*}
$$

The compensated frequency response for each kth subsystem is illustrated in Figure 12 in which all design specifications have been accomplished. In particular, Entry A in Table 3 shows the

Figure 11. Frequency Response Representing Each Susbsystem of the Uncompensated System of the Finned Vehicle Example.

Figure 12. The Improved Compensated Frequency Response of Example 1.

Table 3. System Specifications for the Finned Vehicle Examples.

Margin Number	Margin Value	$\begin{aligned} & \text { Complex } \\ & \text { RE[s] } \end{aligned}$	Frequency TM[s]	Desired Margin	Margin Type	Active List
		A. T	The Uncoupl	d System:		
Iteration No. 0		Subsystem 1, 2.				
1	42.2900	0.000	0.347	0.50	GM	No
2	0.5036	0.200	6.400	0.50	GM	Yes
3	7.5340	0.250	4.437	30.00	PM	Yes
4	0.2241	0.000	19.190	0.10	AM	Yes
Iteration No. 31						
1	3.1130	0.000	0.673	0.50	GM	No
2	30.0300	0.000	2.086	30.00	PM	No
3	0.0920	0.000	19.190	0.10	AM	No
		B. The Coupled System:				
Iteration No. 0		.	Subsystem			
1	42.2900	0.000	0.347	0.50	GM	No
2	0.6114	0.000	8.000	0.50	GM	Yes
3	11.0500	0.250	4.613	30.00	PM	Yes
4	0.2976	0.000	19.190	0.10	AM	Yes
		Subsystem 2.			.	
1	29.3000	0.000	0.347	0.50	GM	No
2	0.2010	0.200	3.600	30.00	PM	Yes
3	0.2360	0.000	19.190	0.10	AM	Yes
Iteration No. 50			Subsystem 1.			
1	2.4590	0.000	0.700	0.50	GM	No
2	28.0300	0.000	1.882	30.00	PM	No
3	0.0870	0.000	19.190	0.10	AM	No
		Subsystem 2.				
1	30.0880	0.000	0.606	0.50	GM	No
2	29.4700	0.000	1.882	30.00	PM	No
3	0.0960	0.000	19.190	0.10	AM	No

specified design objectives versus the final system specifications. Similar results were obtained with the Compensator Improvement Program by Mitche11 and McDaniel in reference [11] for the single input, output system.

A Coupled Dual Input, Dual Output System

This example utilizes the same system as the previous illustration but in this case the plant subsystems are coupled with nonzero off-diagonal terms. Thus, the same uncompensated frequency response data is used to describe the diagonal terms of the plant matrix $[P(s)]$. Table 4 gives the frequency response data describing the coupling terms, that is; $\mathrm{P}_{12}(\mathrm{~s})$ and $\mathrm{P}_{21}(\mathrm{~s})$. The compensation matrix remains the same as described in equation (4.3); however, for generality, the compensator gain of the $G_{22}(s)$ element has been altered to a factor of 0.7 instead of unity.

Requiring the same design objectives as stated in equations (4.2), the improved compensation elements,

$$
\begin{equation*}
G_{11}(s)=\frac{(1.0+1.42713 \mathrm{~s})(5.0+6.52626 \mathrm{~s})}{(1.0+19.2239 \mathrm{~s})(5.0+1.25501 \mathrm{~s})} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{G}_{22}(\mathrm{~s})=\frac{0.7(1.0+2.35364 \mathrm{~s})(5.0+4.07685 \mathrm{~s})}{(1.0+15.2297 \mathrm{~s})(5.0+1.01990 \mathrm{~s})} \tag{4.5}
\end{equation*}
$$

are obtained after 50 iterations. Entry B in Table 3 shows the desired objectives as compared to the final system specifications after the compensation improvement.

Table 4. Frequency Response Data Describing the Coupling Elements of the Plant Matrix [P(s)] in the Coupled Finned Vehicle Example

Data Point	$\begin{aligned} & \text { Complex } \\ & \text { RE }[s] \end{aligned}$	Frequency IM[s]	Uncompensated Plant Response			
			$\mathrm{RE}\left[\mathrm{P}_{12}\right]$	$\mathrm{IM}\left[\mathrm{P}_{12}\right]$	$\mathrm{RE}\left[\mathrm{P}_{21}\right]$	$\mathrm{IM}\left[\mathrm{P}_{21}\right]$
1	0.000	0.100	0.1000	0.0005	0.2001	0.0066
2	0.000	0.132	0.1000	0.0066	0.2002	0.0088
3	0.000	0.178	0.1000	0.0009	0.2003	0.0118
4	0.000	0.240	0.1001	0.0012	0.2006	0.0159
5	0.000	0.347	0.1001	0.0017	0.2013	0.0230
6	0.000	0.501	0.1003	0.0029	0.2028	0.0331
7	0.000	0.646	0.1004	0.0032	0.2046	0.0425
8	0.000	1.230	0.1014	0.0058	0.2161	0.0786
9	0.000	2.000	0.1035	0.0086	0.2400	0.1200
10	0.100	2.800	0.1062	0.0134	0.2750	0.1492
11	0.200	3.600	0.1087	0.0112	0.3105	0.1681
12	0.250	4.000	0.1099	0.0115	0.3276	0.1744
13	0.250	4.921	0.1123	0.0119	0.3630	0.1866
14	0.250	6.000	0.1147	0.0118	0.4002	0.1988
15	0.200	6.400	0.1154	0.0118	0.1259	0.1935
16	0.100	7.200	0.1168	0.0115	0.4356	0.1940
17	0.000	8.000	0.1176	0.0102	0.4520	0.1742
18	0.000	10.071	0.1201	0.0099	0.4952	0.1759
19	0.000	12.400	0.1215	0.0087	0.5241	0.1568
20	0.000	15.600	0.1227	0.0073	0.5485	0.1340
21	0.000	18.327	0.1233	0.0063	0.5613	0.1183
22	0.000	19.191	0.1234	0.0061	0.5644	0.1139
23	0.000	19.638	0.1235	0.0059	0.5658	0.1118
24	0.000	20.563	0.1236	0.0057	0.5686	0.1076
25	0.000	30.415	0.1243	0.0040	0.5850	0.0759
26	0.000	40.095	0.1246	0.0030	0.5912	0.0585
27	0.000	60.686	0.1248	0.0020	0.5061	0.0391
28	0.000	100.000	0.1249	0.0012	0.5986	0.0239

A Dual Input, Four Output System with

Coupled Characteristics

This example is representative of the Yaw/Roll Ascent Flight Control System for the Space Shuttle. The system is similar to that of Figure 2 with a plant possessing two control inputs and four outputs. The 23 discrete frequency response data chosen to describe the plant dynamics are listed in Table 5. The compensation matrix [G(s)] given in Table 6 actually is designed for use on the space shuttle and exemplifies the complexity required in achieving a set of design objectives.

Given the design requirements of Table 7, the CIP produced the improved compensation matrix of Table 6 in 5 iterations, that is, 20 seconds of CPU time on the Univac 1108.

In summary, the CIP is a fast and effective design tool in the area of compensation improvement. For the Finned Vehicle examples, approximately 28 K words of core storage is required; the Shuttle example executes in 32 K of storage. In each example the programming time and computer time is minimal.

Table 5. Plant Dynamics Describing the Yaw/Roll Ascent Flight Control System for Space Shuttle Example.

Table 6. Compensation Matrix [$G(s)$] in Cascaded Factor Form for the Space Shuttle Example.

```
COMPENSATOR (1,1): GAIN =1.0000
```

COMPENSATOR COEFFICIENTS:

ZA	.100000-01	ZB	. 744312		
ZC	1.00000	ZD	1.02373	ZE	8.16526
ZC	1.00000	ZD	2.30558	ZE	2.01630
ZC	1.00000	ZD	1.22262	ZE	4.44622
ZC	1.00000	ZD	1.02373	ZE	8.16526
PA	.133000-01	PB	$=1.18973$		
PC	1.00000	PD	$=4.36098$	PE	18.9002
PC	1.00000	PD	$=4.36098$	PE	18.9002
PC	1.00000	PD	$=2.38040$	'PE	3.99765
PC	$=1.00000$	PD	4.36098	PE	18.9002

COMPENSATOR COEFFICIENTS

$Z A=1.00000$	$Z B=-.996201$	
$Z A=1.0000-01$	$Z B=1.01163$	
$Z C=1.00000$	$Z D=.582803$	$Z E=8.16205$
$Z C=1.00000$	$Z D=.656982$	$Z E=10.4091$
$Z C=1.57605$	$Z E=2.04025$	
$Z C=1.00000$	$Z D=1.44328$	
$Z C=1.00000$	$Z D=1.20585$	$Z E=4$
$P A=1.00000$	$P B=50.0069$	
$P A=1.03300-01$	$P B=.98323$	
$P C=1.00000$	$P D=5.20890$	$P E=18.9033$
$P C=1.00000$	$P D=5.99161$	$P E=25.002$
$P C=1.00000$	$P D=5.32655$	$P E=11.1114$
$P C=1.00000$	$P D=2.39359$	$P E=4.0060$

COMPENSATOR (1,3): GAIN $=.74500$
COMPENSATOR COEFFICIENTS

ZA	. 000000	ZB	51.0048		
ZA	.100000-01	ZB	. 869534		
ZC	1.00000	2D	. 583262	ZE	8.16477
ZC	1.00000	ZD	. 657081	ZE	10.4118
ZC	1.00000	2D	. 582806	ZE	2.04267
ZC	1.00000	2D	1.21041	ZE	4.44575
PA	1.00000	PB	= 50.0095		
PA	.133000-01	PB	= 1.10453		
PC	1.00000	PD	- 5.21469	PE	18.9011
PC	1.00000	PD	5.99959	PE	24.9981
PC	1.00000	PD	5.33026	PE	11.1092
PC	1.00000	PD	2.39180	PE	3.99822

COMPENSATOR $(2,4):$ GAIN $=1.0000$
COMPENSATOR COEFFICIENTS

$Z A=.300000-01$	$Z B=.995009$		
$Z C=1.00000$	$Z D=.827221$	$Z E=8.16655$	
$Z C=1.00000$	$Z D=.992354$	$Z E=6.25852$	
$Z C=1.00000$	$Z D=2.00871$	$Z E=1.56803$	
$Z C=1.00000$	$Z D=1.20369$	$Z E=4.45146$	
$Z C=1.0000-01$	$P B=117$		
$P A=1.0000$	$P D=4.34837$	$P E=18.9029$	
$P C=1.0000$	$P D=4.34837$	$P E=18.9029$	
$P C=11.1106$			
$P C=1.00000$	$P D=3.33705$	$P E=3$	
$P C=1.00000$	$P D=2.39557$	$P E=3.99576$	

Table 6. (Continued) Compensation Matrix [G(s)] in Cascaded Factor Form for the Space Shuttle.

COMPENSATOR ($1, \mathrm{~T}$): GAIN $=1.0000$
COMPENSATOR COEFFICIENTS

$Z A=100000-01$	$Z B=1.00000$		
$Z C=1.00000$	$Z D=1.00000$	$Z E=8.16300$	
$Z C=1.00000$	$Z D=2.28600$	$Z E=2.01400$	
$Z C=1.00000$	$Z D=1.20000$	$Z E=4.44400$	
$Z C=1.00000$	$Z D=1.00000$	$Z E=8.16300$	
$P A=133000-01$	$P B=1.00000$		
$P C=1.00000$	$P D=4.34800$	$P E=18.9030$	
$P C=1.00000$	$P D=2.34800$	$P E=18.9030$	
$P C=1.00000$	$P D=1.40000$	$P E=4.00000$	
$P C=1.00000$	$P D=4.34800$	$P E=18.9030$	

COMPENSATOR COEFFICIENTS:

ZA	$=1.00000$	ZB	$=-1.00000$			
ZA	$=.100000-01$	ZB	$=1.00000$			
ZC	1.00000	ZD	$=.571400$	ZE	$=$	8.16300
ZC	± 1.00000	20	$=.645200$	ZE	$=$	10.4100
ZC	$=1.00000$	2 D	$=.571400$	ZE	$=$	2.04100
ZC	$=1.00000$	ZD	$=1.20000$	ZE	$=$	4.44400
PA	$=.133000-01$	PB	$=50.0074$			
.PA	$=1.00000$	PB	$=1.00000$			
PC	$=1.00000$	PD	$=5.21700$	PE	$=$	18.9030
PC	$=1.00000$	PD	$=6.00000$	PE	$=$	25.0000
PC	$=1.00000$	PD	$=5.33300$	PE	$=$	11.1111
PC	$=1.00000$	PD	$=2.40000$	PE	$=$	4.00000

COMPENSATOR $(1,3):$ GAIN $=.74500$
COMPENSATOR COEFFICIENTS

COMPENSATOR COEFFICIENTS

$\mathrm{ZA}=.300000-01$	$Z B=1.00000$		
$Z C=1.00000$	$Z D=.857000$	$Z E=8.16300$	
$Z C=1.00000$	$Z D=1.00000$	$\mathrm{ZE}=6.25000$	
$Z C=1.00000$	$Z D=2.00000$	$Z E=1.56300$	
$Z C=1.00000$	$Z D=1.20000$	$Z E=4.44400$	
$P A=1.000007$	$P B=1.00000$		
$P C=1.00000$	$P D=4.34800$	$P E=18.9030$	
$P C=1.00000$	$P D=4.34800$	$P E=18.9030$	
$P C=1.00000$	$P D=3.33300$	$P E=11.1110$	
$P C=1.00000$	$P D=2.40000$	$P E=4.00000$	

Table 7. System Specifications for the Space Shuttle Example.

Margin Number	Margin Value	$\begin{gathered} \text { Complex } \\ \text { RE[s] } \end{gathered}$	Frequency IM[s]	Desired Margin	Margin Type	Active List
	A. Subsystem No. I, Iteration No. 0					
1	0.4163	0.000	0.0896	0.60	GM	Yes
2	53.7 .400	0.000	0.0240	30.00	PM	No,
. 3	127.5000	0.000	0.0603	$\cdots 30.00$	PM	No
4	24.2100	0.000	0.0679	30.00	PM	Yes
5	0.0074	0.000	0.3412	0.10	AM	No
6	0.0289	0.000	0.3469	0.10	AM	No
7	0.0097	0.000	0.6600	0.10	AM	No
8 (8 ,						
Subsystem No. 2, Iteration No. 0						
1	0.5941	0.000	0.0896	. 0.60	GM	Yes
2	36.5000	0.000	0.0321	30.00	PM	No
3	0.0885	0.000	0.3434	0.10	AM	Yes
4	0.0076	0.000	0.6600	0.10	AM	No
B. The Improved System Specifications Subsystem No. 1,. Iteration No. 5						
1	0.6120	0.000	. 0.0927	0.60	GM	No
2	38.1800	0.000	0.0222	30.00	PM	No
3	143.9000	0.000	0.0616	30.00	PM	No
4	32.0100	0.000	0.0674	30.00	PM	No
5	0.0307	0.000	0.3469	0.10	AM	No
6	0.0098	0.000	0.4917	0.10	AM	No
7	0.0041	0.000	0.6600	0.10	AM	No
Subsystem No. 2, Iteration No. 5						
1	0.6075	0.000	0.0896	0.60	GM	No
2	31.3600	0.000	0.0339	30.00	PM	No
3	0.0845	0.000	. 0.3434	0.10	AM	No
4	0.0076	0.000	0.6600	0.10	. AM	No

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Because of the complexity of technology and control laws, the design of modern control systems has become increasingly complicated. In this exposition, the theory and associated numerical technique for achieving a computer-aided compensation design improvement algorithm for the multivariable control system have been presented. The technique developed is applicable to linear, timeinvariant systems possessing multiple input, multiple output status whose plant characteristics are described by discrete open-loop frequency response data. The compensation matrix is entered as transfer functions of cascaded first and second order polynomials. The method was designed using a strict constraint algorithm to alleviate the inherent problems generally associated with soft constraint cost functionals. The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the compensation yielding a system that satisfies specified frequency response properties. The computer coding in the Fortran IV language has been included and the practical utility of the program illustrated with space related examples.

Chapter I contains a literature survey of the previous research on the automatic design problem based on theory developed
by classical design methods. Each of the aforementioned techniques has been ascertained successful for the author's specified control area, generally restricted to a single control input system; however, the Compensator Improvement Algorithm [7] appeared most readily applicable and available for extension to the multivariable control case with the objective of obtaining a suboptimal solution to the specified constraints of the control design.

The theoretical concepts of the design algorithm are developed in Chapter II. The mathematical derivations associated with the algorithm in determining the necessary closed-100p frequency response, gradient vectors, and hence, the directional vectors, have been deduced by exact means.

In Chapter III the objective of the schematic algorithm and the computational flow diagram were introduced. This chapter contains an explanation of the flow diagram referring to the theory and synopsis of the subprograms in Appendix A.

Pragmatic examples illustrate the effectiveness of the algorithm in Chapter IV. Three space related examples were presented: (1) a dual input, dual output system exemplifying no coupling; (2) a dual input, dual output system with coupling; (3) a Space Shuttle example with dual control inputs and four outputs. The results herein verify the utility of the Compensator Improvement Program as a practical method of compensation improvement.

In conclusion, this exposition has demonstrated that the classical control theory is amenable to systems with multivariable characteristics. An important benefit derived from the use of the frequency domain for linear time-invariant systems is the intuition it provides in determining the soundness of a system. The digital computer has made possible the application of classical techniques to the optimal design problem. The ultimate contribution of this research effort is the development and implementation of an algorithm to enhance compensator design of systems possessing multivariable control characteristics.

Recommendations

The employment of any digital computer algorithm as an aid in the aggregate design process is perhaps as much an art as the design process itself. The use of the computer-aided design program may free the engineer from many burdensome and time-consuming calculations, but it is the engineer who in essence must. provide the framework in which to enter the compensation in order to achieve the desired control law. This then is perhaps the greatest limitation of any computeraided control design; that is, there is no supplanting the awareness and judgement of an experienced control engineer.

More realistically, however, the Compensator Improvement Algorithm does possess minor limitations which could be reconciled. In particular,

1. CIP should be given the option of accepting either discrete frequency response data or transfer function
information. With the transfer function option, CIP would calculate its own frequency response data.
2. Modifications should be made for CIP to accept prefilters; these filters would be user designated and not altered by the program.
3. CIP should be given the option of accepting sampleddata systems without the necessity of the engineer converting compensation into the $\mathrm{W}-\mathrm{plane}$; possibly CIP could be further extended to accept multirate sampling problems.
4. The practical utility of CIP could be extended by rendering the algorithm capable of producing a two phase optimization program: in particular, the present version of the algorithm would yield a design to meet a set of design objectives producing a feasible solution while continuing to satisfy the desired specifications. For the second phase, perhaps a gradient projection technique could be utilized in optimizing the necessary cost function. In essence the major limitation of the CIP algorithm is its restriction to Iinear, time-invariant control systems. The aspects of extending the work to nonlinear systems have not been contemplated; this omission is regrettable since the occurrence of system uncertainty is always a possibility. In regard to the restriction
of time-invariance, the present CIP techniques are not amenable to time-varying systems.

Mississippi State University
Mississippi State, Mississippi 39762
July 25, 1977

APPENDICES

APPENDIX A

SUBPROGRAM SUMMARIES OF THE COMPENSATOR
 IMPROVEMENT PROGRAM

Introduction

It is the objective of this Appendix to provide the basic concepts in theory and/or programming techniques incorporated within each subroutine. With the enclosed information any efforts made in adaptations or modifications for solving related problems should be reduced significantly. The subprograms are presented in alphabetical order for easy reference.

Subroutine. ADDPTS

In an effort to minimize the input data storage required and the corresponding computer time used in manipulating extensive data, the subprogram ADDPTS[9] generates additional frequency data. In particular, if the spacing of the original response data in the neighborhood of a critical point in the relative stability region becomes too large, this subprogram interpolates the given data in this neighborhood yielding a more accurate stability margin. This design philosophy is based on the continuous nature of the frequency response over the complete range of frequencies. The added frequency points are obtained in accordance with the routine INTER, an interpolation algorithm; a log type of interpolation is used in determining all magnitudes; whereas, phases are calculated by linear interpolation.

This subroutine also requires the routines CRT and EVAL for updating the frequency response at the data points. The routine DELETE is used in conjunction with ADDPTS to retain only the original data at each new iteration.

The following variables are designated for this subprogram:

Subprogram Variables

Input Variables:
KPOINT - An integer variable used to denote the current number of data points.

KIN - An integer variable that denotes the number of inputs to the controller.

KOUT - Integer variable denoting the number of controller outputs.

NB - An integer used as a counter representing the starting number of the margins to be investigated.

NM(I) - An integer array representing the number of margins investigated for each subsystem.

STBM(I) - A one dimensional real array containing the values of the stability margins.
$\operatorname{KPTS}(I, J)$ - A two dimensional integer array containing the frequency numbers of the margins in accordance with a particular subsystem.

CT(I,J) -A two dimensional complex array containing the overall frequency response of the system.
$G(I, J, K)$ - A three dimensional complex array containing the original discrete data frequency response of the plant system.

GC(I,J,K) - A compiex three dimensional array storing the compensator response evaluated at the specified frequency points.
$T(I, J, K)$ - A complex three dimensional array in which the transfer response [GC]•[G] is stored.

OMEGA(I) - A one dimensional complex array containing. the discrete frequency points.

KPTMAX - An integer denoting the maximum number of discrete frequency points allowable on a single iteration.

KGOBAK	- An integer variable used to denote whether frequency points were added.
NIT (I)	- An integer array denoting the number of inactive
	margins for each subsystem.
KINACT (I, J)	- A two dimensional array containing the integer numbers
	corresponding to the frequencies of the inactive or satisfied margins for each subsystem.
NML (I)	- An integer array denoting the number of active margins detected per subsystem.
$\operatorname{KACT}(\mathrm{I}, \mathrm{J})$	- A two dimensional integer array denoting the frequency data numbers of the active or unsatisfied margins for each subsystem.
KPOLD	- An integer denoting the number of data points on the last iteration.
KOLD (I)	- A one dimensional integer array containing the previous data points.
KSYM	- An integer variable used to reference the frequency response of the particular subsystem being manipulated.
The following transient variables are used in the auxiliarv	
subroutines CRT and EVAL and are not affected directly by this subprogram; for more information regarding these variables refer to	
the respective subroutine synopsis.	
CRT:	C1,CI, WORKI
EVAL:	$\mathrm{ZA}, \mathrm{ZB}, \mathrm{ZC}, \mathrm{ZD}, \mathrm{ZE}, \mathrm{PA}, \mathrm{PB}, \mathrm{PC}, \mathrm{PD}, \mathrm{PE}$,
	N1,N2,M1,M2, GAIN, KONT, A, B, C, D, E

Output Variables:

The following output variables are defined as their respective input counterparts, but as outputs have been updated to include the newly generated data points: $G(I, J, K), G C(I, J, K), T(I, J, K), K P O I N T$, OMEGA(I), $\operatorname{KINACT}(\mathrm{I}, \mathrm{J}), \operatorname{KACT}(\mathrm{I}, \mathrm{J}), \operatorname{KOLD}(\mathrm{I})$.

Subroutine CHANGE

The subprogram CHANGE is designed to change the individual compensator coefficients in an orderly manner to induce an improved system. The change in the compensator coefficients is made in accordance with the directional vector of the particular iteration.

Note that the compensator elements are described by the transfer functions in the form of cascaded first and second order factors, that is,

$$
G(s)=(G A I N) \frac{\prod_{i=1}^{N 1}\left(Z A_{i}+Z B_{i} s\right) \prod_{j=1}^{N 2}\left(Z C_{j}+Z D_{j} s+2 E_{j} s^{2}\right)}{\prod_{i=1}^{M 1}\left(P A_{i}+P B_{i} s\right) \prod_{j=1}^{M 2}\left(P C_{j}+P D_{j} s+P E_{j} s^{2}\right)} \cdot(A-1)
$$

Recall that the ultimate goal of the Compensator Improvement Program is the design of compensation so that the measurements of the system performance are equal to or better than the system specifications. The design of the compensators can be expressed mathematically as the strict constraint problem:

$$
\begin{equation*}
\text { Determine } \underline{x}^{T} \tag{A-2}
\end{equation*}
$$

subject to $g_{i}\left(\underline{x}^{T}\right) \geq b_{i}, i=1, \ldots, m$
where x is a vector of the n compensator coefficients. The functions $g_{i}\left(\underline{x}^{T}\right)$ contain measurements of the system performance in terms of the compensator coefficients; thus, these functions represent the stability and attenuation margins, as well as any constraints on the
compensator coefficients. The constants b_{i} are the system specifications.

Assuming that for equation (A-2) the trial solution vector at the $k t h$ iteration is \underline{x}_{k}, then a trial solution vector of a possible improved solution at the $(k+1)$ th iteration is

$$
\begin{equation*}
\underline{x}_{k+1}^{T}=\underline{x}_{k}^{T}+h[\nabla G] \underline{a} \tag{A-3}
\end{equation*}
$$

where [VG] is the Jacobian matrix evaluated at \underline{x}_{k} and consists of all the active constraints, i.e., the functions $g_{i}\left(x_{k}\right)<b_{i}$. The scalar h is a normalized step size. - The vector a is calculated as

$$
\begin{equation*}
\underline{a}=\left[\nabla G^{T} \nabla G\right]^{-1} \underline{c} \tag{A-4}
\end{equation*}
$$

where c is a vector of weighting constants initially set at unity.

The routine DIRVEC determines the directional vector d, where

$$
\begin{equation*}
\underline{d}=[\nabla G] \underline{a} \tag{A-5}
\end{equation*}
$$

Thus the subprogram CHANGE ultimately applies the elements of this directional vector to its corresponding compensator coefficients weighted by the step size h.

- The program variables are defined as follows:

Subprogram Variables

Input Variab1es:

$Z A(I, J, K)$ - A real three dimensional array representing the constant terms of the first order factors of the compensation polynomials.

ZB(I, J, K)	- A real three dimensional array containing the first order factor coefficients of s.
ZC($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	- A real three dimensional array representing the constant terms of the second order factors.
ZD (I, J, K)	- A three dimensional real array containing the s coefficients of the second order factors.
ZE($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	- A real three dimensional array containing the s^{2} coefficients of the second order factors.
N1 (I, J)	- An integer array that denotes the number of cascaded first order factors.
N2 (I, J)	- An integer array that denotes the number of cascaded second order factors.
DV(I)	- A real one dimensional array representing the directional vector d in equation (A-5).
DEL	- A real variable that denotes the step size h in (A-3).
KKK	- An integer used to count the number of elements in the directional vector.
KIN	- An integer denoting the number of controller inputs or sensed states.
KOUT	- An integer denoting the number of controller outputs.
A, B, C	- Parameter variables used to dimension the arrays by the number of maximum allowable cascaded factors.

Output Variables:
The following output variables are defined in the same manner as their respective input variables, but have been updated incrementally in accordance with the directional vector and step size: ZA(I,J,K), $\mathrm{ZB}(\mathrm{I}, \mathrm{J}, \mathrm{K}), \mathrm{ZC}(\mathrm{I}, \mathrm{J}, \mathrm{K}), \mathrm{ZD}(\mathrm{I}, \mathrm{J}, \mathrm{K}), \mathrm{ZE}(\mathrm{I}, \mathrm{J}, \mathrm{K})$.

Subroutine CRT

The subprogram CRT has two major functions as denoted by the input variable KEY. If KEY has been set to unity, the program calculates the closed-1oop frequency response [$C(s)$] in terms of the input vector, that is,

$$
\begin{equation*}
[\mathrm{C}(\mathrm{~s})]=[\mathrm{G}(\mathrm{~s})][\mathrm{P}(\mathrm{~s})]\{\mathrm{I}+[\mathrm{H}(\mathrm{~s})][\mathrm{G}(\mathrm{~s})][\mathrm{P}(\mathrm{~s})]\}^{-1}[\mathrm{R}(\mathrm{~s})] . \tag{A-6}
\end{equation*}
$$

Thus the open-1oop frequency response of the kth system can be obtained by setting the kth diagonal element of [H(s)] to zero, and by setting all the elements of $[R(s)]$ to zero except the kth element which is set to unity; the result is the frequency response between the kth input and the outputs when the k th loop is open.

If KEY is entered as zero, the program is designed to aid the subprogram PARTAL in determining the partial term $\partial C_{k}(s) / \partial G_{i j}$. Actually, this term can be evaluated by the equation

$$
\begin{aligned}
\frac{\partial[C(s)]}{\partial G_{i j}}= & -[G(s)][P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[H(s)] \frac{[G(s)]}{G_{i j}} \cdot \\
& {[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)] } \\
& +\frac{\partial[G(\dot{s})]}{\partial G_{i j}}[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)] \quad(A-7)
\end{aligned}
$$

which bears semblance to equation (A-6). Then, $\partial C_{k}(s) / \partial G_{i j}$ is the kth element of (A-7) with the conditions aforementioned.

Other routines used by this subprogram are the complex matrix inversion and multiplication programs, MATINC and MATMUL
respectively. The variables are defined in the following list:
CRT Subprogram Variables

Input Variables:

KEY - A switch variable which designates the subprogram mode: if KEY is set to unity, the response of ($\mathrm{A}-6$) is returned; if KEY is set to zero, the partial term of (A-7) is calculated and returned.

K - An integer variable denoting specific frequency point under consideration.

KSTM - An integer variable representing the system under consideration, that is, k in the previous discussion.
$T(I, J)$ - A two dimensional complex array of the transfer response $[\mathrm{G}(\mathrm{s})] \cdot[\mathrm{P}(\mathrm{s})]:$

KIN - An integer denoting the number of control inputs.
KOUT - An integer denoting the number of controller outputs.
$P(I, J) \quad$ A two dimensional complex array of the plant response.
I1 . - An integer denoting the control input index of $G_{i j}$ in (A-7).

J1 - An integer denoting the control output index of the $\operatorname{term} G_{i j}$ in equation (A-7).
$\mathrm{Cl}(\mathrm{I}, \mathrm{J})$ - A two dimensional internal complex array containing the total frequency response at a particular frequency point.

CI(I,J) - An internal two dimensional array storing the inverse of the complex frequency response $C 1(I, J)$.

WORKI(I,J) - A two dimensional complex array for internal subroutine use.

A,B,D - Variables denoting dimension allocations.

Output Variables:
CT(I) -A one dimensional complex array representing the response $[C(s)]$ in equation (A-6).

PCG - A complex variable representing the partial term $\partial C_{k}(s) / \partial G_{i j}$ in the previous discussion.

Subroutine DELETE

The subprogram DELETE is designed in conjunction with the ADDPTS routine in an effort to save computer storage and time in manipulating unnecessary data. In particular, this subprogram deletes the extra frequency points and their corresponding response terms generated by the ADDPTS routine when the maximum number of allowable points has been generated; for accuracy, the original input data is always retained.

The routine uses the following variables:

Subprogram Variables
Input Variables:
KPOINT - An integer counter to denote the number of frequency points.

KIN - An integer denoting the number of controller inputs or the measured states.

KOUT - An integer variable representing the number of controller outputs or plant inputs from the controller.

OMEGA(I) - A one dimensional complex array of frequency terms.
$G(I, J, K)$ - A three dimensional complex array consisting of the frequency response describing the plant system.

NIT(I) - An integer array denoting the number of inactive or satisfied margins detected.
$\operatorname{KINACT}(I, J)$ - A two dimensional integer array of the frequency numbers of the corresponding inactive margins for each subsystem.

NML (I)	- An integer array denoting the total number of active or unsatisfied margins detected per subsystem.
$\operatorname{KACT}(I, J)$	- A two dimensional integer array of the frequency
	data of the active margins.
ITER	- An integer representing the present iteration.
KPOLD	- An integer denoting the total number of frequency
	points.
KOLD (I)	- An integer array of the original frequency points
	reference numbers.
KNEW(I)	- An integer array of the generated frequency numbers.
A, B, C, D, E	- Dimension allocations; set by parameter statement
	in the main program.

Output Variables:
The following output variables correspond to their respective input variables, but have been updated by the subprogram deleting the extra data: 0 MEGA($I), G(I, J, K), \operatorname{KiNACT}(I, J), \operatorname{KACT}(I, J), \operatorname{KOLD}(I)$.

Subroutine DIRVEC

The objective of the subprogram DIRVEC is to calculate the directional vector of the constraint improvement algorithm. The directional vector d is calculated as

$$
\begin{equation*}
\underline{\mathrm{d}}=[\nabla \mathrm{G}] \underline{\mathrm{a}} \tag{A-8}
\end{equation*}
$$

where ∇G is a matrix of order (n, m) whose columns consist of the gradients of the active constraints. The m component column vector a is determined by

$$
\begin{equation*}
\underline{a}=\left[\nabla G^{T} \nabla G\right]^{-1} \underline{c} \tag{A-9}
\end{equation*}
$$

where c is a m component column vector whose elements are all positive. The order m corresponds to the number of compensator coefficients. Auxiliary subprograms include the matrix inversion for real variables MATINV and the matrix multiplication MATMUL routines. Definitions of the input and output variables are as follows: Subprogram Variables

Input Variables:
$G(I, J) \quad-A$ two dimensional array whose columns are comprised of the gradients of the active constraints.

NM - Integer value used to designate the number of columns in G, that is, the number of active constraints.

KPARC - Integer variable that represents the number of rows in G, that is, the number of compensator coefficients.

WEIGHT(I) - A real one dimensional array that contains the colum matrix \subseteq of equation (A-9).

E,F,Z,H - Parameter variables for allocating dimension storage.

The transient variables, $A 1, A I$, and WORKR, are used in the auxiliary subprograms MATINV and MATMUL and are not affected directIy in this routine.

Output Variables:
DV(I) - A real one dimensional array which corresponds to the directional vector d in (A-8).

Subroutine EVAL

The subprogram EVAL is designed to evaluate the compensator matrix $[G(s)]$ at each discrete frequency point. Recall the compensation elements are polynomials of the form of cascaded first and second order factors, that is,

$$
G(s)=(G A I N) \frac{\prod_{i=1}^{N 1}\left(Z A_{i}+Z B_{i} s\right) \prod_{j=1}^{N 2}\left(Z C_{j}+Z D_{j} s+Z E_{j} s^{2}\right)}{\prod_{i=1}^{M 1}\left(P A_{i}+P B_{i} s\right) \prod_{j=1}^{M 2}\left(P C_{j}+P D_{j} s+P E_{j} s^{2}\right)}
$$

The subprogram utilizes the polynomial evaluation routine POLEV. This subroutine also calculates the transfer relation $[\mathcal{G}(s)]$ • $[P(s)]$ for each frequency point using the matrix multiplication program MATMUL.

The subprogram uses the following variables:

Subprogram Variables

Input Variables:

XF - A complex variable denoting the discrete frequency point.
$G(I, J, K)$ - A three dimensional complex array containing the original discrete data frequency response of the plant.

K - An integer variable used to denote the current number of the frequency data point.

KIN

- An integer variable denoting the number of inputs to the controller.

KOUT	- An integer that denotes the number of controller outputs.
$\mathrm{ZA}(\mathrm{I}, \mathrm{J}, \mathrm{K})$	- A real three dimensional array containing the constant terms of the first order factors of the numerator.
ZB ($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	- A real three dimensional array containing the first order factor coefficients of s in the numerator.
ZC ($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	- A real three dimensional array representing the constant terms of the second order numerator factors.
ZD (I, J, K)	- A real three dimensional array, containing the s coefficients of the second order factors of the numerator.
$2 \mathrm{E}(\mathrm{I}, \mathrm{J}, \mathrm{K})$	- A real three dimensional array storing the s^{2} coefficients of the second order factors.in the numerator.
PA(I, J,K)	- A real three dimensional array containing the constant terms of the first order denominator factors.
$\mathrm{PB}(\mathrm{I}, \mathrm{J}, \mathrm{K})$	- A.real three dimensional array containing the first order denominator factor coefficients of s.
$\operatorname{PC}(\mathrm{I}, \mathrm{J}, \mathrm{K})$	- A real three dimensional array representing the constant terms of the second order denominator factors.
$\mathrm{PD}(\mathrm{I}, \mathrm{J}, \mathrm{K})$	- A real three dimensional array containing the s coefficients of the second order factors in the denominator.
$\operatorname{PE}(\mathrm{I}, \mathrm{J}, \mathrm{K})$	- A real three dimensional array storing the s^{2} coefficients of the second order denominator factors.
N1 ($1, J$)	- An integer array that denotes the number of cascaded first order factors in the numerator.
$\mathrm{N} 2(\mathrm{I}, \mathrm{J})$	- An integer array that denotes the number of second order cascaded factors in the numerator.

M1 (I, J)	- An integer array denoting the number of cascaded first order factors in the denominator.
M2 (I, J)	- An integer array that denotes the number of second order cascaded factors in the denominator.
GAIN (I, J)	- A two dimensional real array containing the DC gain of each compensator polynomial.
KONT (I, J	- A two dimensional integer array designating whether the DC gain for the particular channel is allowed to vary: if KONT is unity, the gain may vary; if KONT is two, the gain is not allowed to vary.
A, B, C, D	- These variables are defined by a parameter statement in the main program and designate maximum storage allocations in regards to the order of the arrays.
Output Variables:	
GC ($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	- A three dimensional complex array storing the compensator response evaluated at specified frequency points.
$T(I, J, K)$	- A complex three dimensional array in which the transfer response [GC] • [G] is stored.

Subroutine GAINMG

The purpose of the subprogram GAINMG is to locate and calculate the gain margins of a system represented by a discrete open-loop frequency response. With f_{i} as the ith frequency specified, the corresponding complex Erequency response can be represented in real and imaginary terms as $G R_{i}$ and $G I_{i}$ respectively. Thus the following sequence can be formed to detect the occurrence of a gain margin:

$$
\begin{equation*}
U_{i}=G I_{i} \cdot G I_{i-I} \tag{A-11}
\end{equation*}
$$

A gain margin is located whenever U_{i} becomes either negative or zero. The frequency number of the gain margin is taken as i or $i-1$ depending on whether $\left|G I_{i}\right|>\left|G I_{i-1}\right|$ or $\left|G I_{i}\right| \leq\left|G I_{i-1}\right|$; the gain margin is calculated as

$$
\begin{equation*}
\dot{S T B M}=\mid 1 \tag{A-12}
\end{equation*}
$$

where k is either i or $i-1$.

The following variables are designated for the subprogram:

Subprogram Variables

Input Variables:

OMEGA(I) - A complex one dimensional array that contains the specified frequencies in ascending order for describing the system.

GTOTAL(I) - A complex one dimensional array containing the compensated open-loop frequency response for the Ith Erequency.
'KPOINT - An integer number of frequency points used to describe the open-loop frequency response of the system.

FQMIN - The lowest frequency for which gain margins are detected.

FQMAX - The largest frequency for which the gain margins are to be detected.

NM - The integer used as a counter for the number of margins located. For example, assume NM is initially 2 and this program locates 3 margins; these margins would be labelled as margins 3, 4, and 5 respectively.

Output Variables:

NM

- This is the number that designates the last gain margin found.

KPTS(I) - A one dimensional integer array that contains the frequency_members of the margins found.
$\operatorname{STBM}(I) \quad-A$ one dimensional real array that contains the margin values corresponding to the frequency pointer KPTS. These margins are measured in terms of distances from the point $(-1+j 0)$ in the complex $G H(j \omega)$ plane.

Subroutine INTER

INTER is a subprogram designed in conjunction with the ADDPTS routine to interpolate specified input data, thereby generating new data. The algorithm is designed to yield a log type of interpolation in determining all magnitudes; whereas, phases are calculated by a linear interpolation scheme.

The variables are defined in the listing:

Subprogram Variables

Input Variables:

$S \quad-A$ complex number consisting of the lower bound of the quantity to be interpolated.
T - A complex number consisting of the upper quantity bound of the interpolation.

Output Variable:
R. - A complex number representing the resultant of the interpolation.

Subroutine MATINC

Subroutine MATINC determines the inverse of a matrix of complex elements by the Gauss-Jordon reduction method. It is assumed that no diagonal elements of the original matrix are zero. If in applying the reduction procedure the magnitude of the ith element of the ith pivot row is of magnitude less than 1.0×10^{-25}, the inverse matrix is assumed nonexistent.

The input, output variables are defined as:

Subprogram Variables

Input Variables:

$X X(I, J)$ - A complex two dimensional square array whose inverse is desired.
$\mathrm{N} \quad$ - An integer denoting the number of rows and columns in matrix $X X(I, J)$.
$X(I, J) \quad-A$ complex array containing the generated augmented matrix.

A,B,C - Parameter variables denoting storage allocation.

Output Variables:
$Y Y(I, J)$ - A complex two dimensional array that contains the inverse of the $X X(I, J)$ array.

IER - The error code of the subprogram. If IER is zero, no error was incurred; if IER is unity, the matrix is assumed to be singular.

Subroutine MATINV

The subprogram MATINV uses the Gauss-Jordon reduction method in determining the inverse of a matrix of real elements. The procedure and program variables of this routine are defined in the same manner as in the subprogram MATINC but with application to the real matrix $X X(I, J)$ and its inverse $Y Y(I, J)$ composed of real elements only.

Subroutine MATMUL

Subroutine MATMUL is designed to determine the product of a matrix A of order (n, ℓ) by a matrix B of order (ℓ, m). The elements $c_{i j}$ of the resultant matrix C of order (n, m) are obtained by the equation

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{\ell} a_{i k} b_{k j} \tag{A-13}
\end{equation*}
$$

This subprogram is designed to operate on either real or complex matrices as specified by the input variable NC. The input, output variables are designated as follows:

Subprogram Variables

Input Variables:

$\mathrm{AC}(\mathrm{I}, \mathrm{J}) \quad$ - A complex two dimensional array representing the matrix A as aforementioned when the subprogram is used in the complex mode.
$B C(I, J)$ - A complex two dimensional array representing the aforementioned matrix B.
$A R(I, J)$ - A real two dimensional array corresponding to matrix A in the previous discussion when the subprogram is used in real term mode only.
$\operatorname{BR}(I, J)$ - A real two dimensional array corresponding to a real matrix B.

N

- An integer variable denoting the number of rows in the matrix A.

L - An integer variable denoting the number of columns in A.

LI	- An integer variable denoting the number of rows in matrix B in the above discussion.
M	- An integer variable that denotes the number of columns
	in matrix B .
ND	- An integer variable used to designate the proper
	storage placement when multiplying three dimensional
	matrices; for the two dimensional case set ND to unity.
NC	- An integer which designates whether the program is to
	multiply real or complex matrices. If NC is zero, the
	complex matrices $A C, B C, C C$ are used; if NC is unity,
	the real matrices $A R, B R, C R$ are manipulated.
A, B, C,	- These variables are defined by a parameter statement in
	the main program and designate maximum storage capabilities in regard to the order of the matrices.

Output Variables:

CC(I, J,ND) - A complex three dimensional array that contains the complex elements $c_{i j}$ in equation (A-13).
$C R(I, J, N D)$ - A real three dimensional array containing the resultant matrix C when the subprogram is in real mode.

Subroutine NYQUIST

The subprogram NYQUIST determines the number of closed-loop poles of a closed-loop system inside a certain enclosed contour of the s-plane. The number of closed-loop poles within the contour is from the relation

$$
\begin{equation*}
Z=P+N, \tag{A-14}
\end{equation*}
$$

where Z is the number of closed-loop poles, i.e., the number of roots of the characteristic equation inside the contour; p is the number of open-loop poles within the contour, and N is the algebraic sum of the encirclements around the ($-1+j 0$) point by the frequency response. Note the encirclements around the $(-1+j 0)$ point are assumed positive if clockwise and negative if counterclockwise.

The NYQUIST encirclements are counted by application of the equation:

$$
\begin{gather*}
N=\operatorname{INTEGER}\left\{ \pm \frac{1}{8}+\frac{P_{c}}{2}+\sum_{i=2}^{M}\left\{\operatorname{ANGLE}\left[1+G\left(s_{i}\right)\right]\right.\right. \\
\left.\left.-\operatorname{ANGLE}\left[1+G\left(s_{i-1}\right)\right]\right\} / \pi\right\} \tag{A-15}
\end{gather*}
$$

where the operator INTEGER yields only the integer portion of the calculation in brackets, and. P is the number of poles on the contour. It is assumed that the contour is symmetric with respect to the real axis in the s-plane; hence the frequency response $G(s)$ is symmetric about the real axis of the $G(s)$-plane. Thus in equation (A-15), only frequency points on that portion of the
contour in the upper half-plane are used in the evaluation. The fraction $\pm 1 / 8$ is used to account for the fact that the frequencies s_{1} and s_{M}, the first and last frequency points respectively, may not actually be on the real axis. It is assumed that the points are chosen so that the sum of the angles is within $\pi / 4$ radians of the correct value. The positive and negative signs are chosen in agreement with the the sign of the summation respectively. The input, outpub variables are defined as follows:

Subprogram Variables

Input Variables:

$\mathrm{N} \quad$ - An integer variable that denotes the number of frequency response points supplied by the user, i.e., M in (A-15).

G(I) - A complex one dimensional array containing the frequency response $G(s)$ where s is chosen along the contour.

NRHP - An integer number of the open-loop poles inside the contour, i.e., P in the previous discussion.

NCON - An integer number of open-loop poles located on the contour.

FMAX - A real variable denoting the maximum frequency range.
F(I) - A complex one dimensional array containing the specified frequency points.

Output Variables:
NCIRL - An integer representing the number of encirclements around the $(-1+j 0)$ point.

NZ - An integer of the number of poles of the closed-loop system inside the contour.

Subroutine OUTPT

The purpose of this subprogram is to output certain information at various stages of the main program. Three areas of information available for output are: Compensator Information, Frequency Response Information, and Stability Margin•Data.

If the user desires data on the compensation matrix, the: selector variable N is set to zero and the program outputs the compensator values at the last iteration.

By setting the selector variable to unity, the overall frequency response data is the output.

For investigating the stability margins, the selector variable is set to two. The corresponding output data includes:

1. The margin numbers
2. The frequency where each margin occurs
3. The value of each margin
4. The desired value of each margin
5. The type of margin, i.e., phase margin (P), gain margin
(G), stability margin (S), or attenuation margin (A)
6. The directional vector at the last iteration.

Subroutine PARTAL

The Compensator Improvement Program is given the ability to determine the necessary partial derivatives of the various active margins, assuming a frequency response along a general contour, by the subprogram PARTAL. In order to develop this subroutine, the theoretical derivations of Section 3 of Chapter II, were implemented to yield these partial derivatives.

Recall that in designing compensation, CIP searches the compensated frequency response $C(j \omega)$ over specified ranges of frequency to determine which margins do not satisfy the desired values. For the unsatisfied or active margins, the design specifications are con-verted to distances between certain critical points of the open-1oop frequency response and particular points in the corresponding complex plane; that is, the typical objective function for the kth open-1oop system is

$$
\begin{equation*}
d=\left\{\left[A+C_{k}(j \omega)\right]\left[A+C_{k}(j \omega)\right]^{*}\right\}^{\frac{1}{2}} \tag{A-16}
\end{equation*}
$$

where $C_{k}(j \omega)$ is the $k t h$ system's compensated response and A is the point in the complex plane from which the specification is measured. Generally, point A is chosen as the $(-1.0+j 0.0)$ point for stability margins and $(0.0+j 0.0)$ for attenuation margins.

PARTAL determines the gradients of these design objectives with respect to the compensator coefficients of the controller. Thus, the partial derivatives of d with respect to some parameter w is

$$
\begin{equation*}
\frac{\partial d}{\partial w}=\operatorname{Re}\left\{\left[A+C_{k}(j \omega)\right]^{*} \frac{\partial C_{k}(j \omega)}{\partial w}\right\} \div d \tag{A-17}
\end{equation*}
$$

Evaluation of (A-17) depends largely on determining $\partial \mathcal{C}_{k}(j \omega) / \partial w$ accurately. Using the chain rule this becomes

$$
\begin{equation*}
\frac{\partial C_{k}(j \omega)}{\partial w}=\frac{\partial C_{k}(j \omega)}{\partial G_{i j}} \cdot \frac{\partial G_{i j}}{\partial w} \tag{A-18}
\end{equation*}
$$

where $G_{i j}$ is the element of the controller $[G(s)]$ in which the free parameter w appears.

As derived in Chapter II, the first term in equation (A-18) may be evaluated by taking the kth element of

$$
\begin{align*}
\frac{\partial[C(s)]}{\partial G_{i j}}= & -[G(s)][P(s)]\{I+[G(s)][P(s)][H(s)]\}^{-1}[H(s)] \frac{\partial[G(s)]}{\partial C_{i j}} . \\
& {[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)] } \tag{A-19}\\
& +\frac{\partial[G(s)]}{\partial G_{i j}}[P(s)]\{I+[H(s)][G(s)][P(s)]\}^{-1}[R(s)]
\end{align*}
$$

where the kth diagonal element of $[H(s)]$ is set to zero and all the elements of $[R(s)]$ are set to zero except the kth which is set to unity. Note also that $\partial[G(s)] / \partial G_{i j}$ is a zero matrix except for the (ij)th element which is unity.

The second term in ($\mathrm{A}-18$) , $\partial \mathrm{G}_{\mathrm{ij}} / \partial \mathrm{w}$, is derived in Chapter II. Assuming the (ij) th element of $[\mathrm{G}(\mathrm{s})]$ is composed of a cascaded arrangement of transfer functions, i.e.,

$$
\begin{equation*}
G_{i j}(s)=\prod_{k=1}^{K} G_{i j k}(s) \tag{A-20}
\end{equation*}
$$

where K is the number of cascaded elements. The ℓ th cascaded element of the (ij)th compensator of $[G(s)]$ has the general form

$$
\begin{equation*}
G_{i j}(s)=\frac{\sum_{m=0}^{M} x_{i j \ell m^{\prime}} s^{n}}{\sum_{n=0}^{N} y_{i j \ell n} s^{n}} \tag{A-21}
\end{equation*}
$$

Then, the free parameters of this element are the $x^{\prime} s$ and $y^{\prime} s$. If w in (A-17) is the pth numerator coefficient of (A-21), then

$$
\begin{equation*}
\left.\frac{\partial G_{i j}(s)}{\partial x_{i j \ell p}}=G_{i j}(s) \frac{+s^{p}}{\left(\sum_{m=0}^{M} x_{i j \ell m} s^{m}\right.}\right) \tag{A-22}
\end{equation*}
$$

Similarly, if w represents the pth denominator coefficient of (A-21), then

$$
\begin{equation*}
\frac{\partial G_{i j}(s)}{\partial y_{i j \ell p}}=G_{i j}(s) \frac{-s^{p}}{\left(\sum_{n=0}^{N} y_{i j \ell n} s^{n}\right)} \tag{A-23}
\end{equation*}
$$

Equations (A-16), (A-18), (A-22), and (A-23) indicate how the needed partial derivatives can be calculated. The subprogram PARTAL implements these equations including the necessary logic for determining the pertubation points A and the orderly arrangement of the terms of the partials. The subprogram also performs the necessary
manipulations in calling the subroutine CRT which is used to determine $C_{k}(j \omega)$ in equation ($A-16$).

The input/output variables are defined in the following list. Note the compensator coefficients and related data enter the subprogram through a common block.

Subprogram Variables

Input Variables:

OMEGA(I) - A complex one dimensional array that contains the specified frequencies in ascending order for describing the system.

NFREQ - An integer variable denoting the number of active margins to be improved.

CT(I) - A one dimensional complex array represented by the compensated closed-loop frequency response $C(s)$ in equation (A-19).

KPTS(I) - An integer array used as a pointer to denote the frequency number of the margin investigated.

TYPE(I) - A real array used to denote the type of margin being investigated.
$T(I, J, K)$ - A three dimensional complex array containing the transfer product of the compensation $G(s)$ and the plant response $P(s)$ for the specified frequencies. $P(I, J, K)$ - A complex three dimensional array describing the openloop frequency response of the plant.
$G(I, J, K)$ - A complex three dimensional array representing the compensation evaluated at the specified frequencies.

KSYM - An integer used for addressing the proper system
arrays.
$\operatorname{PFX}(I, J),-A$ two dimensional real array containing the partials $\operatorname{PFY}(I, J)$ of the numerator and denominator compensators respectively.

A,B,C,D, - Parameter variables denoting dimension allocations. E,F,Z

The following variables are used to describe the compensation polynomials; please refer to the Subprogram EVAL for a complete description: KIN,KOUT, ZA, ZB, ZC, ZD, ZE, PA, PB, PC, PD, PE,N1,N2,M1,M2, GAIN, KONT .

The transient variables apply to the following auxiliary subprogram and are not affected directly in this routine:

Subprogram CRT: CI,CI,WORKI

Output Variables:
NPARC - An integer variable that represents the number of partials determined.
$P G(I, J)-A$ two dimensional real array representing the $\partial d / \partial w$ in (A-17).

Subroutine PHASEM

The subprogram PHASEM is used to detect and calculate the phase margins of an open-10op control system represented by a discrete frequency response. The open-loop frequency response is assumed to be given in terms of real and imaginary values. In particular given the ith frequency as f_{i}, the corresponding real and imaginary parts of the frequency response are $G R_{i}$ and $G I_{i}$. The phase margins occur at the real zero crossings of the sequence:

$$
\begin{equation*}
s_{i}=1.0-\left|G R_{i}+j G I_{i}\right|^{2} \tag{A-24}
\end{equation*}
$$

Next the following sequence is formed:

$$
\begin{equation*}
U_{i}=s_{i} \cdot s_{i-1} \tag{A-25}
\end{equation*}
$$

If $U_{i} \leq 0$, then either S_{i} or S_{i-1} is a zero or S_{i} has made a zero crossing. Regardless of which condition has occurred, the frequency number of the phase margin is chosen as i or i-1 depending on the smaller magnitude of S_{i} or S_{i-1} * The corresponding margin is calculated as

$$
\begin{equation*}
S T B M=\left|1.0+G R_{k}+j G I_{k}\right| \tag{A-26}
\end{equation*}
$$

where k is either i or $i-1$ as mentioned above.
The following variables are defined for this program:

Subprogram Variables

Input Variables:

OMEGA(I) - A complex one dimensional array that contains the specified frequencies in ascending order for describing the system.

GTOTAL(I) - A complex one dimensional array containing the compensated open-loop frequency response for the Ith specified frequency point.

KPOINT - The integer number of frequency points used to describe the open-loop frequency response of the system.

FQMIN - The lowest frequency for which the particular margins are to be determined.

NM - The integer used as a counter for the number of margins located.

Output Variables:
NM . - This is the number that designates the last margin found.

STBM(I) - A one dimensional real array that contains the margin values corresponding to the frequency pointer KPTS(I). These margins are measured in terms of distances from the $(-1+j 0)$ point in the complex $G H(j \omega)$ plane.

The purpose of this subprogram is to evaluated polynomials at specified frequency points. The frequency data is complex in nature. The routine is designed with an internal subfunction to avoid inaccuracies in raising a complex variable to a power. The input, output variables are defined as follows:

Subprogram Variables

Input Variables:
FW(I) - A one dimensional real array containing the polynomial coefficients in ascending order.
K - An integer denoting the order of the polynomial.
X - The complex variable of evaluation.

Output. Variables:

F - The complex resultant of the evaluation.

Subroutine SRMINS

The purpose of this subprogram is to calculate the maxima or minima of a discrete data open-10op frequency response with respect to a chosen point along the real axis. For example, assume $\mathrm{GR}_{\mathbf{i}}$ and $G I_{i}$ are the real and imaginary response terms corresponding to the ith frequency point. The following sequence is formed:

$$
\begin{equation*}
\mathrm{U}_{i}=\left|P+G R_{i}+j G I_{i}\right|^{2} \tag{A-27}
\end{equation*}
$$

where P represents the negative point of investigation located on the real axis. Another sequence is generated as follows:

$$
\begin{equation*}
v_{i}=U_{i}-U_{i-1} \tag{A-28}
\end{equation*}
$$

If $V_{i} \cdot V_{i-1} \leq 0$ and $V_{i-1}>0$, then the ($i-1$) frequency point corresponds to a relative maximum with respect to point P. Otherwise, if $V_{i} \cdot V_{i-1}$ is less than or equal to zero and $V_{i-1}<0$, then the (i-1) frequency is a relative minimum with respect to P.

The definitions of the variables are the same as those in the routine PHASEM with the following additional input variables:

Subprogram Variables

Input Variables:

P - The negative value of the real axis point for which maxima or minima are to be located.

N

- An integer variable to determine whether the program is to determine maxima or minima. Maxima are investigated if N is unity; minima are found if N equals -1 .

Subroutine XCHECK

The XCHECK routine is not designed to check for damping ratio violations, but is necessary to assure that compensator poles and zeros on the specified zeta boundaries do not result in a zeta violation upon incrementation. The technique employed for designing the compensation is to adjust the directional vector by zeroing the corresponding partial vector terms until the directions of movement of the above mentioned poles are within the defined sector. In this effort, the subsystem values of the zeta damping factor and the undamped natural frequency ω_{n} must be calculated and compared to the user specifications.

Recall that the form of the compensation used by CIP is cascaded first and second order factors. In the case of first order factors if either of the coefficients is negative the program defaults with an error signal denoting the occurrence of a zeta violation, and, consequently, the run is terminated automatically; this can only occur on the first iteration because on succeeding iterations the subprogram, YCHECK, assures that a zeta violation cannot occur. The assumption here is that the user has erred in his initial selection of compensation.

If either of the coefficients is zero, the result is a root at the origin or at infinity. In this case the avoidance of a zeta violation is assured by forcing the corresponding terms of the directional vector to be nonnegative. This is implemented by first checking the signs of the corresponding terms of the directional
vector; if these signs are negative, the corresponding terms of the partial vector are zeroed and the directional vector is recomputed. On each iteration the number of variable coefficients is reduced by the number of terms in the directional vector forced to zero in this manner. If the number of variable coefficients becomes less than the number of active margins the CIA will fail and the run will terminate automatically.

In the case of second order factors the program calculates the ω_{n} and zeta as defined by the following second order factor:

$$
\begin{equation*}
T(s)=s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2} \tag{A-29}
\end{equation*}
$$

This equation can be related to the CIP form of second order factors as:

$$
\begin{equation*}
T(s)=a_{0}+a_{1} s+a_{2} s^{2} \tag{A-30}
\end{equation*}
$$

Comparing $(A-29)$ and $(A-30)$ it is easily seen that

$$
\begin{gather*}
\omega_{n}=\sqrt{a_{0} / a_{2}} \tag{A-31}\\
\zeta=\left(a_{1}\right) /\left(2 \omega_{n} \cdot a_{2}\right) \tag{A-32}
\end{gather*}
$$

The damping ratio ζ is checked to determine if a zeta violation has occurred. If such an occurrence is detected, as with first order factors the program is automatically terminated.

If the value of ζ indicates roots of the second order factor on the ζ boundaries, the next step is to determine whether these
roots will result in zeta violations upon incrementation of the compensator coefficients. This is accomplished by checking the sign of the change in ζ from incrementation.

The change in zeta with respect to the change in the coefficients of ($\mathrm{A}-30$) is

$$
\begin{equation*}
\Delta \zeta=\frac{1}{2 \omega_{\mathrm{n}}}\left[-\frac{a_{1}}{2 a_{\mathrm{o}_{0}, 2}} \Delta a_{0}+\frac{1}{a_{2}} \Delta a_{1}-\frac{a_{1}}{2 a_{2}^{2}} \Delta a_{2}\right] \tag{A-33}
\end{equation*}
$$

where $\Delta a_{0}, \Delta a_{1}$, and Δa_{2} are the elements of the directional vector corresponding to a_{i}, a_{2}, and a_{3}. If $\Delta \zeta$. is negative a zeta violation is inevitable. In order to avoid such an occurrence, associated terms of the partial vectors are zeroed and the directional vector is recomputed. This is continued until $\Delta \zeta$ is nonnegative. As with the first order factors the number of variable coefficients is reduced.

The program variables are defined as follows:

Subprogram Variables

Input Variables:

KIN - An integer variable that denotes the number of inputs to the controller.

KOUT - Integer variable denoting the number of controller outputs.
$\mathrm{ZA}(I, J, K)$ - A real three dimensional array representing the constant terms of the first order factors.
$Z B(I, J, K)$ - A real three dimensional array containing the first order factor coefficients of s.

NRT́R2 - Same as NRTR1 but applying to second order factors. A,B,C,D,E - Parameter variables used to dimension the arrays by the number of maximum allowable elements.

Output Variables:

The following output variables are defined in the same manner as their respective input variables, but have been updated in the subprogram: PG(I,J), KKK, KRE, LPV.

Subroutine YCHECK

The subprogram YCHECK is designed to detect compensation poles or zeros that have been forced outside the allowable camping ratio sector due to incrementation of the coefficients. If such is the case, the routine selects a maximum step size which will inhibit the zeta boundary violation while continuing to produce an improved solution.

Recall that the CIP compensator data is described by transfer functions in cascaded first and second order factors. Similar to the XCHECK subprogram, YCHECK examines the first order compensator factors for possible right half plane roots. If such a root is found, the program reduces the step size until the root is marginally in the left half plane.

Assuming that all the first order roots are now in the left half plane, the subprogram proceeds to investigate the second order factors for possible zeta boundary violations. A typical second order factor of the form

$$
\begin{equation*}
T(s)=a_{0}+a_{1} s+a_{2} s^{2} \tag{A-34}
\end{equation*}
$$

yields the relation for the undamped natural frequency

$$
\begin{equation*}
\omega_{\mathrm{n}}=\sqrt{\mathrm{a}_{0} / \mathrm{a}_{2}} \tag{A-35}
\end{equation*}
$$

and the zeta damping ratio as

$$
\begin{equation*}
\zeta=\left(a_{1}\right) /\left(2 \omega_{n} \cdot a_{2}\right) \tag{A-36}
\end{equation*}
$$

Upon comparison with the user specified damping ratio, if a zeta violation is incurred, the deincrementation of the second order coefficients continues iteratively until no violation occurs. From this increment a new step size is calculated and the routine returns to the main program to determine the compensator coefficients in accordance with this step size.

The input and output variables are defined in the following list.

Subprogram Variables
Input Variables:
KIN - An integer variable that denotes the number of inputs to the controller.

KOUT - Integer variable denoting the number of controller outputs.

ZA(I,J,K) - A real three dimensional array representing the constant terms of the first order factors.
$\mathrm{ZB}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ - A real three dimensional array containing the first order factor coefficients of s.
$\mathrm{ZC}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ - A real three dimensional array representing the constant terms of the second order factors; i.e., a_{0} in (A-34).
$\mathrm{ZD}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ - A real three dimensional array containing the s coefficients of the second order factors; i.e., a_{1} in (A-34).

ZE($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	```- A real three dimensional array containing the s}\mp@subsup{}{}{2 coefficients of the second order factors; i.e., a }\mp@subsup{a}{2}{ in (A-34).```
NI (I, J)	- An integer array that denotes the number of cascaded first order factors for each subsystem.
N2 (I, J)	- An integer.array denoting the number of cascaded second order factors for each subsystem.
DV(I)	- A real one dimensional array representing the directional vector d in equation (A-5).
ZETA	- A real variable that denotes the desired minimum damping ratio.
KKK	- An integer used to count the number of elements in the directional vector.
STEP	- A real variable denoting the step size
PMG	- A real variable denoting the magnitude of the partial vector.
KRE	- A program control integer.
A, B, C, D, E	- Parameter variables used to dimension the arrays by the maximum number of elements allowable.
NRTR1,	- An integer denoting whether first or second order
NRTR2	factors, respectively, are constrained to the left half plane: if 1, the factors are unconstrained; otherwise, constrained.

Output Variables

The following variables are defined in the same manner as their respective input variables, but have been updated in the subprogram: STEP, KKK, KRE, LPV.

APPENDIX B

FORTRAN IV LISTING OF THE COMPENSATOR IMPROVEMENT PROGRAM

This appendix contains a complete Fortran version of the Compensator Improvement Program for Multi-variable Control Systems. The program is completely self-contained, i.e., it requires no system library, etc. The necessary data input is explained in the comment statements preceding the main program. The subprograms are listed in alphabetical sequence. For information regarding subprogram theory or variables, refer to the respective synopsis of Appendix A.

c	$11+N G+N P+N S \quad A S F(L), A S F(L), L=1, N A \quad 8 G 10.3$
C	-
c	-
C	$12+N G+N P+N S+N A F 1, F 2, . ., F 10$ 8G10.3
c	OMEGA $(K), G(1, J, K), J=1, K I N$,
C	$I=1$, KOUT 4G20.5
C	GAIN(I,J),N1(I,J),N2(I,J),
c	
c	ZA(I,J,L), ZB(I,J,L),L=1,N1 7G10.5
c	ZC(I,J,L), ZD(I,J,L), ZE(I,J,L),
C	$L=1, N 2 \quad 7 \mathrm{Clo.5}$
C	PA(I,J,L), PB (I,J,L),L=1,M1 7G10.5
C	$P C(I, J, L), P D(I, J, L), P E(I, J, L)$,
C	$L=1, M 2 \quad 7610.5$
C	
C DEFINITIONS OF I/O VARIABLES	
C	
	ITERATION CONTROL OATA
C	
C	MODE -DETERMINES wHETHER THE PROGRAM IS TO OPERATE IN THE
C	SUM IMPROVEMENT FRQUEMCY MODE (SIFR) OR THE TOTAL
C	IMPROVENENT FREQUENCY MODE (TIFR). IF DATA CARD
C	BLAISK THE PROGRAM AUTOMATICALLY DEFAULTS TO THE
C	TIFR MODE. IF SIFR IS DESIRED THEN MODE=SIFR.
C	NZERO1-DETERMINES WHETHER 1-ST ORDER ZERU FACTORS ARE
c	CONSTRAINED TO L.H.P. (IF .EQ, TO 1, UNCONSTRAINED
C	OTHERUISE, CONSTRAIMED).
C	NZEROZ-SAME. AS NZERO1, EXCEPT FOR 2-MD ORDER FACTORS.
C	NPOLEI-SAME AS NZERO1, EXCEPT FOR 1-ST ORDER POLE FACTORS.
C	NPOLEZ-SAME AS NZERO1 EXCEPT FOR 2-ND ORDER POLE FACTORS.
C	ZETAZ- MINIMUM DANPING RATIOS FOR COMPENSATOR ZEROS; APPLIES
C	ONLY IF NZERO .NE.I.
C	KEY $=0$, NYOUIST SUBPROGRAM NOT CALLED
C	ZETAP - SAME AS ZETAZ APPLIED TO POLES
C	KSTART -STARTING ITERATION NO.
C	KNUIT - STOPPING ITEPATION NUMBER
c	KPOINT - NO. OF POINTS FROM OPEN LOOP FREQ. RESPONSE USED
C	IF KPOINT $=0$, READ A FREQUENCY, THEN EACH CHANNEL'S
C	STPMAX - MAXIMUM CHANGE TO BE MADE IN COMPENSATOR COEFFICIENTS
C	SMALLEST COMPENSATOR COEFFICIENT OF THE INITIAL
C	COMPENSATOR)
C	STPMIN - MINIMUM STEP SIZE DESIGNATOR
C	PINACT -LARGEST DIFFERENCE GETUEEN A CONSTRAINT AND ITS
C	DESIRED VALUE IN GOING FROM InACTIVITY TO ACTIVITY
C	KPRINT - NO. OF ITERATIONS SKIPPED BETWEEN PRINTING OF IMFOR.
C	KEYOUT=1, REQUESTS PRINTOUT
C	KEYOUT=0, NO PRINTOUT
C	KEYOUT (1) - COMPLETE ITERATION OUTPUT
C	KEYOUT (2) - OUTPUT CONPEMSATOR INFORMATION
C	KEYOUT (3) - OUTPUT FREOUENCY RESPONSE
C	KEYOUT (4) - OUTPUT MAPGIN SPECIFICATIONS
c	NONCTR(I) - NUMBER OF POLES ON CONTOUR
C	NOLRHP (I) - NUMBER OF POLES INSIDE CONTOUR

```
VARIABLES FOR MARGIN RADII SPECIFICATIONS
    NUMBER OF MARGIN RADII TO BE SPECIFIED:
        NG - NO. OF GAIN MARGIN RADII SPECIFIED
        NP - NO. OF PHASE MARGIN RADII SPECIFIED
        NS - NO. OF STABILITY MARGIN RAUII SPECIFIED
        NA - NO. OF ATTENUATION NARGIN RADII SPECIFIED
    VARIABLES FOR GAIN MARGIN RADII DESIGNATIONS
        IF FREQ .GT. GMF(I) BUT .LT. GMF(I+I) DESIQED MARGIN = GMR(I)
        IF FREQ .GT. GMF(I+I) BUT.,LT. GNF(I+2) DESIRED MARGIN = GMR(I+I)
        ETC.
        IF FREQ .GT. GMF(NF) DESIPED NARGIN = GMR(NF)
    VARIABLES FOR PHASE MARGIN RADII DESIGNATIONS
        IF FREQ.GT. PMF(I) BUT. LT. PMF(I+1) DESIRED MARGIN = PMR(I)
        IF FREQ .GT.PMF(I+1) BUT, LT. PMF(I+2) DESIRED MARG:N = PMR(I+1)
        ETC.
        IF FREQ .GT. PMF(NF) DESIRED MARGIN = PMR(NF)
    VARIABLES FOR STABILITY MARGIN RADII DESIGNATIONS
        IF FREQ .GT. SMF(I) BUT .LT. SMF(I+I) DESIRED MARGIN = SMR(I)
        IF FREQ.GT. SMF(I+1) BUT.LT. SMF(I+2) DESIRED MARGIN = SMR(I+1)
        ETC.
        IF FREQ .GT. SMF(NF) DESIREO MARGIN = SMR(NF)
    VARIABLES FOR ATTENUATION MARGIN RAOII DESIGNATIONS
        IF FREQ .FT. ASF(I) RUT .LT. ASF(I+I) DESIRED MARGIN = ASR(I)
        IF(FREQ.GT. ASF(I+1) BUT.LT. ASF(I+2) DESIRED MARGIN = ASR(I)
        ETC:
        IF.FREQ .GT. ASF(NA) DESIRED MARGIN = ASR(NA)
```

 F1: F2 - FREQUENCIES, BETWEEN WHICH G.M.'S ARE FOUND
 F3 : F4 - FREQUENCIES BETWEEN WHICH P.M.'S ARE FOUNO
 F5 : FG - FREQUENCIES BETWEEN WHICH S.M.'S ARE FOUND
 F7: F8 - FREQUENCIES BETWEEN WHICH A.M.'S ARE FOUND
 VARIABLES FOR PLANT DYNAMICS
 KIN IS NO. OF CONTROL INPUTS.
 KOUT IS NO. OF OUTPUTS
 OMEGA(I) - ITH FREQ. (ASSIJMED TO BE IN HZ.)
 G(I,J,K) = PLANT DYNAMICS WITH INDEX F(KIN,KOUT,KPOINT)
 DESCRIPTION OF COMPENSATION
GAIN(I) ODENOTES INITIAL D. C. GAIN VALUE FOR I-TH CHANNEL
KONT(I)-D.C. DESIGNATOR FOR I-TH CHANNEL
KONT (I) $=1 \quad$ GAIN ALLOWED TO VARY
KONT $(I)=2$ GAIN NOT ALLOMED TO VARY

230	WRITE (6,230$)$ FORMA $\left(5 X\right.$, OPEN LOOP SYSTEM INPUT FREQUENCY RESPONSE: $, 1,31 \mathrm{X},{ }^{\circ} \mathrm{CO}$
	$00260 \mathrm{~K}=1, \mathrm{KPDINT}$
	READ (5,240) OMEGA $(K),(C G(I, J, K), J=1, K I N), I=1, K O U T)$
240	FORMAT (4G20.5)
	$00260 \mathrm{I}=1$, KOUT
	$00260 \mathrm{~J}=1, \mathrm{KIN}$
	WRITE (6,250$) \mathrm{K}, \mathrm{I}, \mathrm{J}, \mathrm{OMEGA}(\mathrm{K}), \mathrm{G}(\mathrm{I}, \mathrm{J}, \mathrm{K})$
250	FORMAT ($5 \mathrm{X}, \mathrm{I} 3,2(5 \mathrm{X}, \mathrm{I} 2), 2(5 \mathrm{X}, 2 \mathrm{G10.4)}$)
260	CONTINUE
C	COMPENSATOR INPUT DATA
	DO 320 I=1, KIN
	DO $320 \mathrm{~J}=1, \mathrm{KOUT}$
	READ (5,270) GAIN(I,J),N1(I,J),N2(I,J),M1(I,J), M2(I,J), KONT(I,J)
$\int \begin{aligned} & 270 \\ & c \end{aligned}$	FORMAT (1G10.5.5I5)
	READ COEFFICIENTS IN ASCENDING POWERS OF S, IN IST AND ZND ORDER $\mathrm{NC}=\mathrm{MI}(\mathrm{I}, \mathrm{J})$
	IF (NC.EQ.0) G0 TO 280
	READ (5,310) (ZA (I, J,L), ZB (I, J,L),L=1,NC)
280	$\mathrm{NC}=\mathrm{NC}(1, J)$
	If (VC.EQ.0) GO T0 290
	READ (5,310$)(Z C(I, J, L), Z D(I, J, L), Z E(I, J, L), L=1, N C)$
290	$M C=M 1(1, J)$
	IF (MC.EQ.0) GO TO 300
	READ (5,310) (PA (I, J,L), PB (I,J,L),L=1,MC)
300	$M C=M 2(I, J)$
	IF (MC.EQ.0) G0 T0 320
	READ (5,310) (PC (I, J,L), PD (I,J,L), PE(I,J,L),L=1,NC)
310	FORMAT (7G10.5)
320	CONTINUE
c	DATA INPUT COMPLETED
C	determine No. of independent parameters
	KNOT=0
	LNOT $=0$
	KVARY $=0$
	DO $3301=1, \mathrm{KIN}$
	DO $330 \mathrm{~J}=1$, KOUT
	KNOT $=\mathrm{KNOT}+2 \star N 1(I, J)+3 * N 2(I, J)$
	LNOT $=$ LNOT $+2 * M 1(I, J)+3 * M 2(I, J)$
	$K V A R Y=K V A R Y+N 1(I, J)+N 2(I, J) * 2$
	KVARY=KVARY+MI (I, J) + M $2(1, J) * 2$
330	If (KONT $(1, J) . E \cap .1) ~ K V A R Y=K V A R Y+1 ~$
	NPARC=KNOT+LNOT
	ITER=KSTART
	STEP =STPMAX
	STPOLD $=$ STPMAX
	KPOLD $=$ KPOINT
	DO $340 \quad 1=1$, KPOLD
340	$\operatorname{KOLD}(\mathrm{I})=\mathrm{I}$
	$K P R=-1$
	DATA RADE /114.591559/
	DO $360 \mathrm{I}=1$, N O
	IF ($(P M R(I) . G E .0$.$\left.\left.) .AND. (P^{M} R(I) . L E .180.\right)\right)$ G0 TO 360
	WRITE (6,350)
350	
	1 PHASE MARGIN SPECIFICATIONS ****')

```
    STOP
    PMR(I)=2.*SIN(PMR(I)/RAD2)
    FNYQT=AMAX1(GMF (NG),PMF(NP),SMF (NS))
370 KRESET=0
    IF ((ITER.EQ.KSTART).OR.(KPOINT.LT.1.5*KSTAND)) GO TO 380
    CALL DELETE (KPOIMT,KIN,KDUT,OMEGA,G,NIT,KINACT,NML,KACT,ITER,KPOL
    10,KOLD,KNEW,A,B,C,D,E)
    KRESET=1
    CALCULATION OF CONPENSATED FREQUENCY RESPONSE
380 DO 390 K=1,KPOINT
390 CALL EVAL (OMEGA(K),GC,G,T,K,KIN,KOUT,ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,F
    1E,N1,N2,M1,M2,GAIN,KONT,A,B,C,D)
        IF (KPR.EQ.KPRINT) KPR=0
        KPR=KPR+1
        IF (ITER.NE.KSTART) GO TO 400
        IF (KEYOUT(2),EQ.1) CALL OUTPT (0,KSYM,KPOINT,CT(1,KSYM),OMEGA,ITE
    1R,N,KPTS(1,KSYM),KMIN,STBM(1,KSYM),RQ,TYPE(1,KSYM),ACTIVE,KIN,
    2 KOUT,ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,PE,N1,N2,M1,M2,GAIN,KONT,A,B,C,K
    30LD)
    IF (ITER.GT.KQUIT) GO TO 1020
    DETERMINATION . OPEN LOOP FREQUENCY RESPONSE CT OF KSYM . . . . 
    NAMF0
    NSUM=0
    MAD=0
        LPV=KVARY
        ADD =1.E-15
        DO 750 KSYM=1,KIN
        KPLAST=KPOINT
        OO 410 K=1,KPOINT
        CALL CRT (1,K,KSYM,T(1,1,K),KIN,KOUT,CT(1,KSYM),G(1,1,K),PCG,I1,J1
    1,CI,CI,WORKI,A,B,D)
        IF (KEYOUT(3).EG.1) CALL OUTPT (1,KSYM,KPOIUT,CT(1,KSYM),OMEGA,ITE
    1R,N,KPTS(1,KSYM),KMIN,STBM(1,KSYM),RG,TYPE(1,KSYM),ACTIVE,KIN,
    Z KOUT,ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,PE,N1,N2,M1,M2,GAIN,KONT,A,B,C,K
    30LD)
    CONTINUE
    DETERMINATION OF MARGINS . . . . . . . . . . . . . . . . . . . . 
    NM (KSYM) =0
    DETERMINATION OF GAIN MARGINS BETWEEN FI AND F2:
    CALL GAINNG (CT(1,KSYM),KPOINT,NM(KSY*i),F1,F2,KPTS(1,KSYM),STBM(1,
    (KSYM),ONEGA)
    KPM=NM(KSYM)+1
    NGMS=NM(KSYM)
    IF (NM(KSYM).EQ.O) GO TO 440
    CALL ADOPTS (KPOINT,KIN,KOUT,1,NM(1),STBM(1,KSYM),KPTS(1,1),CT(1,1
    1),G,GC,T,OMEGA,KGOBAK,KPTMAX,NIT,KINACT,NML,KATT(1,1),KPOLD,KOLD,K
    ZSYM,C1,CI,WORKI,ZA,ZG,ZC,ZD,ZE,PA,PE,PC,PO,PE,N1,N2,M1,MZ,GAIN,KON
    3T,A,B,C,D,E)
    IF (KPOIMT.GT.KPTMAX) GO TO 450
    IF (KGOBAK.EQ.1) GO TO 420
    N=NR.(KSYM)
    SETTING DESIRED STABILITY RADII OF GN'S:
    DO 430 I=1,N
    TYPE(I,KSYMI)=XXG
    KWHICH=KPTS(I,KSYM)
    FREHZ=AIMAG(OMEGA(KUHICH))
```

```
    DO 430 L=1,NG
    IF (FREHZ.GE,GMF(L)) RQ(I,KSYIA)=GMR(L)
CONTINUE
NM(KSYM)=NGMS
DETERMINATION OF PHASE MARGINS BETNEEN F3 AND F4:
CALL. PHASEM (CT(1,KSYM),KPOINT,NM(KSYM),F3,F4,KPTS(1,KSYM),STBM(1,
IKSYM),OMEGA)
    N=NM(KSYM)
    IF (N.LT.KPM) GO TO 490
    CALL ADOPTS (KPOINT,KIN,KOUT,KPM,NM(1),STBM(1,KSYM),KPTS(1,1),CT(1
    1,1),G,GC,T,OMEGA,KGOBAK,KPTMAX,NIT,KINACT,NML,KACT(1,1),KPOLO,KOLO
    Z,KSYM,C1,CI,WORKI,ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,PE,NI,NZ,M1,MZ,GAIN,K
    3ONT,A,B,C,D,E)
        IF (KPOINT.LE.KPTMAX) GO TO 470
        WRITE (6,460) KPTMAX
        FORMAT ('0',5X,3(1H*), 2X, 'TERMINATION REASON: NO. OF FREQ. PPOIN
    1TS HAS EXCEEDED*,15,2X,3(1H*))
    GO TO 900
    IF (KGOBAK.EQ.1) GO TO 440
    N=NM(KSYM)
    SETTING DESIRED STABILITY RADII OF P.M.'S:
    DO 480 I=KPM,N
    TYPE (I,KSYM)=XXP
    KNHICH=KPTS(I,KSYM)
    FREHZ=AIMAG(OMEGA(KWHICH))
    OO 480 L=1,NP
    IF (FREHZ.GE.PMF(L)) RQ(I,KSYM)=PMR(L)
    CONTINUE
    KPM=N+!
    CONTINUE
    KLAST=NM(KSYM)
    NM(KSYM)=KLAST
    KSTAM=KPM
    DETERMINATION OF STABILITY NARGINS
    CALL SRMINS (CT(1,KSYM),KPOINT,NM(KSYM),1.,1,F5,F6,KPTS(1,KSYM),ST
    18M(1,KSYM),OMEGA)
        N=NM(KSYM)
        IF (N.LT.KPN) GO TO 590
        CALL AODPTS (KPOINT,KIN,KOUT,KPM,NM(1), STBM(1,KSYM),KPTS(1,1),CT(1
```



```
    2,KSYM,C1,CI, WORKI,ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,PE,N1,N2,M1,M2,GAIN,K
    SONT,A,B,C,O,E)
        IF (KPOINT.GT.KPTMAX) GO TO 450
        IF (KGOBAK.EQ.1) GO TO 500
        IF (ITER.EQ.KSTART) GO TO 510
        IF (KEY.EG.O) GO TO 530
    CALL NYOIST (KPOINT,CT(1,KSYM),NOLRHP(KSYM),NONCTR(KSYM),NCIRL,NZ,
    1FNYOT,OMEGA)
        IF (NZ.EQ.0) GO TO 530
        IF (ITER,NE,KSTART) GO TO 760
        WRITE (6,520) KSYM
        FORMAT ('0',5X,'VITH THE INITIAL COMPENSATION FOR SYSTEM NO.',I3,1
        1X,"HAS ClOSED LOOP POLES INSIDE THE CONTOUR IN THE" PHASE STABILI
        ZZATION REGION*)
5 3 0 ~ C O N T I N U E
    IF (KPR+1.NE.KPRINT) GO TO 530
```

```
C SETTING DESIRED STABILITY MARGINS
    N=NA(KSYM)
    DO 540 I=KPM,N
    TYPE(I,KSYM):=XXS
    KUHICH=KPTS(L,KSYM)
    FREHZ=AIMAG(OMEGA(KWHICCH))
    DO 540 L=1,NS
    IF (FREHZ.GE,SMF(L)) RQ(I,KSYM)=SMR(L)
540. CONTINUE
    CHECK TO SEE IF ANY P.M.*S,G.M."S, OR S.M."S EQUAL
    IF THERE RESULTS SOME THAT ARE EQUAL ONLY THE FIRST IS RETAINED.
    IF (KSTBM.LE.1) GO TO 580
    DO 570 LB=1,N
    NSG=LB+1
    CONTINUE
    IF (NSG.GT.NM(KSYM)) GO T0 580
    DO 570 I=NSG,N
    IF (KPTS(LB',KSYMi).NE.KPTS(I,KSYM)) GO T0 570
    N=N-1
    0O 560 L=LB,N
    KPTS(L,KSYM)=KPTS(L+1,KSYM)
    STBM(L,KSYM)=STBN(L+1,KSYM)
    RQ(L,KSYM)=RQ(L+1,KSYM)
    TYPE(L,KSYM)=TYPE(L+1,KSYM)
    GO TO 550
    CONTINUE
    CONTINUE
    KPM=N+1
    CONTINUE
    KPADD=KPOINT-KPLAST
    IF (KPADD,NE,O) WRITE (6,600) KPADD,ITER,KPOINT
O00 FORMAT (1HO,5X,I3,1X,34HPOINTS INERE ADDED ON ITERATION NO,,I4,/10X
    1,26HNO. OF FREQ. POINTS IS NOW,I4)
        KMIN(KSYM)=N
        IF ((ITER.EQ.KSTART).OR.(KRESET.EQ.1)) KSTAND=KPOINT
    DETERMINATION OF ATTENUATION MARGINS
        CALL. SRMINS (CT(1,KSYM),KPOINT,NM(KSYM),0.,~1,F7,F8,KPTS(1,KSYM),S
    1TBM(1,KSYM), ONEGA)
    SETTING DESIRED STABILITY MARGINS .. . . . . . . . . . . . . .
        N=NR(KSYM)
        IF (N.LT.KPM) GO TO 620
        00610 I=KPM,N
        TYPE(I,KSYM) =XXA
        KWHICH=KPTS(I,KSYM)
        FREHZ=AIMAG(OMEGA(KWHICH))
        00 610 L=1,NA
        IF (FREHZ.GE.ASF(L)) RQ(I,KSYM)=ASR(L.)
610 CONTINUE
620 CONTINUE
C CHECKING MODE REGUIREMENTS
    IF (ITEF.EQ.KSTART) GO TO 750
    PORN=1.
    N=NM(KSYM)
    NI=NIT(KSYM)
    NL=NHL (KSYM)
    IF (N.EQ.O) GO TO 750
    KCHMIN=MINO(N,NL+NI)
    KKK=0
```

```
        DO 660 I=1,N
    DO 630 J=1,NL.
    DO 630 K=-2,2
    IF (KPTS(I,KSYM).EQ.KACT(J,KSYM)+K) GO TO 650
    DO 640 J=1,NI
    DO 640 K==2,2
    IF (KPTS(I,KSYM).EQ.KINACT(N,KSYM)+K) GO TO 650
    GO TO 660
650 KKK=KKKK+1
660 CONTINUE
    IF (KKK.LT.KCHMIN) GO TO }76
    NSUM=NSUM+N
    DO 740 I=1,N
    IF (I.GT.KMIN(KSYM)) PORM=-1.
    IF (PORM*(STBM(I,KSYM)-RQ(I,KSYM)).GE.0.) GO TO 740
    IF (NIT(KSYM).EQ.O.) GO TO 700
    00690 J=1,NI
    00670 K=-2,2
670 IF (KPTS(I,KSYM),EQ.KINACT(J,KSYM)+K) GO TO 680
    GO TO 690
680 IF (PORM*(RQ(I,KSYM)-STBM(I,KSYM)).GT.PINACT) GO TO 760
690 CONTINUE
700 IF (NL.EQ.O) GO TO 740
    DO 710 J=1,NL
    00710 K=-2,2
710 IF (KPTS(I,KSYM).EQ.KACT(J,KSYM)+K) GO TO 720
    MAD=MAD+1
    GO TO 740
720 CONTINUE
    IF (MODE,NE.ITIFR) GO TO 730
    IF (PORM*(STBM(I,KSYM)=SML.(J,KSYM)).LT.-1.E-06) GO TO 760
730 CONTINUE
    ADD=ADD+PORM*(STBM(I,KSYM)=SML(J,KSYM))
740 CONTINUE
750 CONTINUE
    IF (ITER.EQ.KSTART) GO TO 800
    IF (MAD.EQ.NSUM) ADD=1.
    IF (ADD.GT.0.) GO TO 770
760 STEP=-ARS(STEP)/2.
    IF (ABS(STEP).LT.STPMIN) GO TO 780
    ITER=1TEF=1
    KPR=KPR-1
    GO TO 980
770 STEP=1.41416*ABS(STPOLD)
    IF (ARS(STEP).GT.STPMAX) STEP=STPMAX
    GO TO 800
C OUTPUT CONTROL
750 WRITE (6,790) STPMIN:
790 FORMAT ('0',5'X,***** TERMINATION - STEP SIZE LESS THAN *,G1S.5,2X,
    1******)
        GO TO 90.0
800 NAM1=0
    IF ((KPR.EQ.KPRINT),OR.(ITER.EQ.KSTART).OR.(ITER.EQ.KQUIT)) WRITE
    1(6,810) STEP
810 FORMAT ('0',25X,'PRESENT STEF SIZE =',G15.5)
    DO 840 KSYM=1,KIN
    N=NM(KSYM)
    KSM=KMIN(KSYM)
```

```
M, ll
```

```
    STOP
C SET DOT PRODUCT
920 DO 930 N=1,NAM
    WE!GHT (N)=1.
    IF (NAM.LE.LPV) GO TO 960
    WRITE (6,950)
    FORMAT ["O",5X,"***** TERMINATION REASON - NO. OF ACTIVE CONSTRAI
    1NTS EXCEEDS THE NO. OF ALLO&ABLE VARIRABLES *****'')
    STOP
    CALL DIRVEC (PG,NAM,NPARC,DV,WEIGHT,PFX,PFY,WORKR,E,F,C5,E2)
    KRE=0
    KKK=0
    CALL XCHECK (KIN,KOUT,ZA,ZB,ZC,ZD,ZE,N1,NZ,DV,ZETAZ,PG,NAM,KRE,NZE
    \RO1,NZEROZ,LPV,A,B,C,D,E,F,KKK)
        IF ((KRE.EQ.3).AFID.(ITER.EQ.KSTART)) GO TO 1000
        IF (KRE.EQ.1) GO TO 940
        CALL XCHECK (KIN,KOUT,PA,PB,PC,PD,PE,M1,MZ,DV,ZETAP,PG,NAM,KRE,NPQ
        ILEI,NPOLEZ,LPV,A,B,C,D,E,F,KKK)
        IF ((KRE.EQ.3).AND. (ITER.EQ.KSTART)) GO TO 1000
        IF (KRE,EQ.1) GO TO 940
        PSQ=0.
        DO 970 I=1,NPARC
        PSG=PSQ+DV(I)**2
        PMG=SQRT (PSQ)
        IF (PMG.LT.1.E-08) PMG=1.Em08
        OEL=STEP/PMG
        KKK=1
        CALL CHANGE (ZA,ZB,ZC,ZO,ZE,N1,N2,DV,DEL,KKK,KIN,KOUT,A,B,C)
        CALL CHANGE (PA,PB,PC,PD,PE,M1,MZ,DV,DEL,KKK,KIN,KOUT,A,B,C)
        IF (KRE.NE.3) STPOLD=STEP
        IF (KRE.EQ.3) STEP=STEP+STPOLD
        KKK=0
        IF (KRE.EQ.3) GO ro 990
        KRE=0
        CALL YCHECK (KIN,KOUT,NI,NZ,ZA,ZB,ZC,ZD,ZE,KRE,STPOLD,PMG,ZETAZ,NZ
        1ERO1,NZEROZ,DV,A,B,C,D,E,KKK,STEP)
        CALL YCHECK (KIN,KOUT,MI,MZ,PA,PB,PC,PD,PE,KRE,STPOLD,PMG,ZETAP,NP.
    1OLEI,NPOLEZ,DV,A,B,C,D,E,KKK,STEP)
        IF (KRE.EQ.3) GO }7098
    KFE=0
    ITER=ITER+1
    GO TO 370
    WRITE (6,1010)
1010 FORMAT ('0',5X,'*** TERMINATION REASON: INITIAL COMPENSATORS DO N
    1OT SATISFY ZETA CONSTRAINTS ****)
        STOP
    END
```

```
                                    SURROUTINE ADDPTS
            SUBPOUTINE ADDPTS (KPOINT,KIM,KOUT,N&,NM,STRM,KPTS,CT,G,GC,T,OMEGA
    1,KGOBAK,KPYMAX,NIT,KINACT,NHL,KACT,KPOLD,KOLD,KSYM,CI,CI,NOPKI,ZA,
    ZZB,ZC,ZD,ZE,PA,PB,PC,PO,PE,MI,NZ,M1,NZ,GAIN,KONT,A,B,C,D,E)
    SUBPROGRAM DESIGNED TO GENERATE ADDITIONAL FREQUENCY DATA:
    PROGRAM INCORPORATES THE ROUTINES CRT, INTER, AND TRFR.
    SUBPROGRAM YARIABLES:
        KPOINT - INTEGER NUMBER OF CURRENT DATA POINTS
        KIN - INTEGER NUPBER OF CONTROLLER INPUTS
        KOUT - INTEGER NUMBER OF CONTROLLER OUTPUTS
        NB - STARTING NO, OF MARGINS TO BE IMVESTIGATED
        NM * INTEGER NUNBER OF MARGINS INVESTIGATED
        STBM(I) - REAL ARRAY OF STABILITY MARGINS
        KPTS(I) - INTEGER ARRAY OF FREQUENCY NOS. OF MARGINS
        CT(I) - COMPLEX ARRAY OF FREQUENCY RESPONSE
        G(I,J,K) - 3D COMPLEX ARRAY OF DISCRETE FREQ, FESPONSE
        GC(I,J,K) - COMPLEX ARRAY OF COMPENSATION EVALUATED AT DISCRETE PT
        T(I,J,K) - COMPLEX ARRAY OF TRANSFER RESPONSE GL*G IS STORED
        OMEGA(I) - COMPLEX ARRAY OF DISCRETE FREOUENCY POINTS
        KPYMAX - MAXIMUM NUNGER OF FREQUENCY POIMTS ALLOWABLE
        NIT - AN INTEGER OF INACTIVE MAPGINS
        KINACT(I)- ARRAY OF INTEGERS CORRESPONOING TO INACTIVE MARGINS
        NML - AN INTEGER DENOTING ACTIVE NARGINS DETECTED
        KACT(I) - FREQUENCY DATA NUM&ERS OF ACTIVE MARGINS
        KPOLD - INTEGER OF DATA PGINTS OF LAST ITERATION
        KOLD(I) - INTEGER ARRAY OF PREVIOUS DATA FOINTS
        KSYM - INTEGER REFERENCE TO PARTICULAR SUBSYSTEM
    COMNON ITER,KSTART
    INTEGER A,B,C,D,E
    COMPLEX CT,G,GC,DMEGA,T
    DIMENSION CT(D,A),G(B,A,D), GC(A,B,D), KACT(E,A), KINACT(E,A), KU
    1LD(1), KPTS(E,A), NIT(A), NM(A), NML(A), OMEGA(D), STBM(1), T(A,A,
    2.0)
    KGOBAK=0
    NX=NM(KSYM)
    DO 110 N=NB,NX
    K=KPTS(N,KSYMI)
    OG1=CABS(CT(K,KSYM)-CT(K..1,KSYM))
    DGZ=CABS(CT(K+1,KSYM)=CT(K,KSY:M))
    IF (STBM(N).GT.5.*OG1) GO TO 100
    K=K+1
    IF (K.E(0.2) GO TO 100
    CONTINUE
    KPOINT=KPOINT+1
    IF (KPOINT.GT.KPT!^AX) RETURN
```



```
subroutine change 2
SUBROUTINE CHANGE(ZA,ZB,ZC,ZD,ZE,NI,N2,OV,DEL,KKK,KIN,KOUY,A,B,C) ○. OESIGIUED TO CHANGE COMPENSATOR COEFFICIENTS ACCORDING TO THE DIRECTIONAL VECTOR
INTEGER \(A, 8, C\) DINEMSION ZA (A, B, C), ZB(A,B,C),ZC(A,B,C),ZD(A,B,C),ZE(A,B,C),DV(1) C \(\quad\) M, \((A, B), N 2(A, B)\)
On a I \(=1, K I N\) DO \& J=1,kOUT NX=1, (I, J)
            IF(NX.EQ.0)GO TO 2
    DO 1 L=1,i|X
    ZA(I,J,L)=ZA(I,J,L)+DV(KKK)*DEL
    ZH(I,J,L)=2*([,J.L.L)+DV(KKK+1)*DEL
    kKk=kKK+2
    vx='v2(I,J)
            IF(fv.E日.0) GO T0 4
    DU 3 L=1, \X
    ZC(I,J,L)=ZC(I,J,L)+DV(KKK)*DEL
    Z.)(I,J,L)=ZC.(I,J,L)+[VV(KKK+1)*DEL
    LE(I,J,L)=LE(I,J,L)+DV(KKK+?)*DEL
    KKK=KKk+3
    COISTINUE
    RETUR's
    ENO
    SIBROUUTINE CRT (KEY,K,KSTM,T,KIN,KOUT,CT,P,PCG,II,JI,CI,CI,WORKI,A
    1,8,D)
C SUBPROGHAY PERFORMS Z FUNCTIONS DENOTED BY THE INPUT KEY:
    KEY IS 1. CLOSED LOOP FREOUENCY RESPONSE CT(S) IS FOUND IN
    TEK'IS OF INPUT VECTOR: KEY IS O, SUBPROGRAM AIDS PARTAL IN
    DETERIAINIIIG THE PARTIAL OF C(S) WRT. G(S)IJ. PROGRAM IN=
    CORPIRATES MATI:IC, NATMUL ROUTINES.
    SUBPPOGRAH VARIABLES:
        KEY - PROGRAM MODE VARIAPLE
        KSTM - SUHSYSTEN IN COI.SIDERATION
        T(I,J) = COMAPLEX THANSFER RESPONSE G(S)*P(S)
        KI!S - NU. GF CONTROLLER INPUTS
        KNUT - NO. OF CONTROL OUTPUTS
        P(I,J) - COAPLEX PLAMT RFSPONSE ARRAY
        II - CONTROL INPUT INDEX OF G(S)IJ
        J1 - CONTROL GUTPUT INDEX OF G(S)IJ
        CT(J) - CONPLEX CLOSED LOOP FREQUENCY RESPONSE
```

```
    Tk is the kth column of t(S)
    CI IS THE kSTM RESPONSE
    ZEROING THE KTH COLUMN OF (T(S) + I):
    INTEGER A,B,D
    COMPLEX C1(A,A),T(A,A),CI(A,A),P(B,A),CT(D),PCG
    DO 10 I=1,KIN
    DO 10 J=1,KIN
    C1(I,J)=E:APLX(0.,O.)
    IF (L.NE.KSTM) CI(I,J)=T(I,J)
    IF (I.EQ.KSTM) CI(I,J)=CMPLX(0,0.)
    IF (I.EG.J) C1(I,J)=CMPLX(1.,0.)+C!(I,J)
    continue
    CALL MATINC (CI,KIN,CI,IER,WORKI,A,A,2*A)
    IF (IER.EQ.Z) GO TO 40
    CALL Ya MNUL (T,CI,CI,CI,T,T,KIN,KIN,KIN,KIN,1,O,A,A,1)
    CT(K)=C1(KSTM,KSTM)
    Cl at this point is total response c in notes.
    IF (KEY.EQ.1) RETURN
    now the partial of C w.r.t. g(I,J)
    PCG=0:0
    DO 20 I=1,KIN
    PCG=PCG+P(J1,I)*CI(I,KSTM) -
    IF (II.EO.KSTM) GO TO 30
    PCG=-CI(KSTM,II)*PCG
    continue
    RETURN
    GRITE (6,50) KSTM,K
    FORMAT (/SX,'INVERSE MATRIX INDETERMINATE BY THIS METHOD AT KSYM=
    1^,I3,'K= ',I3/)
    RETURN
    END
                SUbROUTINE DELETE
    SUBROUTINE DELETE(KPOINT,KIN,KOUT,OMEGA,G,NIT,KINACT,NML,KACT,
    CITER,KPOLD,KOLD,KNEG,A,B,C,D,E)
    IMTEGER A,B,C,D,E
    COMPLEX OMEGA.G
    OIMENSION OMEGA(D),G(B,A,D),KINACT(E,A),NIT(A),KACT(E,A),KOLD(D),
    CNML(A),KNEW(D)
    L=0
    DO 7 K=1,KPOINT
    DO 4 I=1,KIN
    NX=NIT(I)
    IF(NX.EQ.0) GO TO 2
    DO 1 J=1,NX
    IF(K.ER.KINACT(J,I)) GO T0 6
    NX=NML(I)
    IF(NX.EG.O) GO TO 4
```

```
    DO 3 J=1,NX
    IF(K.EQ.KACT(J,I)) GO TO 6
    CONTINUE
    DO S J=1,KPOLO
    IF(K.EQ.KOLD(J)) GO TO 6
GO TO 7
L=L+1
    KNEN(L)=K
    CONTINUE
    ADELET=KPOINT-L
    KPOINT=L
    DO 8 K=1,KPOINT
    L=KNE!N(K)
    G:IEGA(K)=0MEGA(L)
    DO 8 I=1,KOUT
    DO 8 J=1,KIN
    G(I,J,K)=G(I,J,L)
    DN 12 K=1,KPOINT
    DO 12 I={,KIN
    NX=NIT(I)
    00 9 J=1,NX
    IF(K'vEw(K),EQ.KINACT(J,I))KINACT(J,I)=K
    HX=NML(I)
    DO 1.0 J=1,NX
    IF(K+|EM(K).EG.K\dot{ACT}(J,I))KACT(J,I)=K
    nO il J=1,KPOLD
    IF(K.JLD(J).EQ.KNEW(K))KOLD(J)=K
    contiNUE
    AifTE(6,13)KDELET,ITER
    FORMAT(1H0,5X,I3,2X,'POINTS WERE DELETED OR ITERATION NO. 'I3)
    RETURN
    END
                SURROUITINE DIRVEC
    SUBROUTINE DIRVEC(G,NN,KPARC,OV,WEIGHT,A1,AI,WORKR,E,F,Z,H)
DIRECTIONAL VECTOR PROGRAM
    SUBPROGRA:A DESIGNED TO. CALCULATE THE DIRECTIONAL VECTOR OF
    THE CONSTRAINT IMPROVEMENT ALGORITHMM. DIRECTIONAL VECTOR
    OV CALCULATED AS
            DV = (#G)*A
    WHERE #},\mathrm{ IS (H,M) GRADIENT MATRIX WHOSE COLUNNS ARE THE
    GRADIENTS OF THE ACTIVE CONSTRAINTS; COLUMN VECTOR, A IS
    A = INV(#G"祘)*C;
    COLUMN C I'S M COMPONENT VECTOR OF POSITIVE ELEMENTS; M:IS
    INUMAER OF CONPEASATOR COEFFICIENTS.
                                    |
```

```
DEFINITIONS OF I/O VARIABLES
G -MATRIX wHUSE ROWS CONTAIN THE GRADIENT VECTORS OF THOSE
        STARILITY MARGINS ONLY CONSIDERED PERTINENT
        -NUMGER UF STABILITY MARGINS CONSIDERED PERTINENT
    NM KARC -iNO. ROWS IN G, I.E., COMPENSATOR COEFFICIENTS
DV(I) -REAL ARRAY OF DIRECTIOHAL VECTOR
NEIGUT-WEIGHTING FACTOR VECTOR
        INTEGER E,F,Z,H
        DI|ENSION G(E,F),AI(E,E),AI(E,E),WEIGHT(1),OV(I)
        DO 2 K=1,NM
        0O2 J=K,NM
        SuA=0.
        D\cap 1 I= 1,KPARC
    StIM=SIJM+G(J,I)*G(K,I)
    Al(J,K)= SUM
    A1(K,j)= SUM
    CDNTINUE
    IF(NN.GT.1) GO TO 3
    \DeltaI(1,1)=1./A1(1.1)
    A1(1,1)= vEEIGHT(1) * AI(1,1)
    GC TO 6
    continue
    CALL MAT,INV.(A1,NH,AI,IER,HORKR,E,E,H)
        I'F(IEP.EG.0) GOOTO.5
    ARITE (6,4).
    FORMAT(*O*,15\dot{X}
    CMT *****)
    STop
    CALL MATMIJL(AI,Y,Y,AI,VEIGHT,A1,N:M,NM,NM,1,1,1,E,E,1)
    continue
    OO 8 I=1.KPARC
    SUM=.0.
    DO 7 J=1,NM
    SUM=SUM+G(J,I)*A1(J,1)
    DV(I)=SUM
    RETURN.
    END
```


SUBROUTINE EVAL

```
SUBROUTINE EVAL (XF,GC,G,T,K,KIN,KOUT,ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,P 1E,N1,N2;M1,MZ,GAIN,KONT,A,B,C,D)
INTEGER A,B.,C,D
COMDLEX GCX,GCY,GCN,GCD,GC \((A, B, D), G(B, A, D), T(A, A, D)\)
DIMENSIO:N N1 \((A, B), \operatorname{COEF}(3), Z A(A, B, C), Z B(A, B, C), Z C(A, B, C), Z D(A\), \(1 B, C), Z E(A, B, C), P A(A, B, C), P B(A, B, C), P C(A, B, C), P D(A, B, C), P E(A\), 2B,C), \(\operatorname{GAIN}(A, B), N 2(A, B), M 1(A, B), M 2(A, B)\)
COMPLEX XF
```

```
            EVALUATION OF GC, THE COMPENSATOR TRANSFER
    DO 90 I=1,KIN
    DO 90 J=1,KOUT
    GCX=CMPLX(1.,0.)
    GCY=CMPLX(1.,0)
    GCN=C:APLX(1.,0.)
    GCD=CMPLX(1.,0.)
    NC=!U1(I,J)
    IF (NC.EQ.0) GO TO 20
    DO 10 L=1,NC
    COEF(1)=ZA(I,J,L)
    COEF(2)=ZB(I,J,L)
    CALL POLEV (COEF,1,XF,GCX)
    GCH=GCX*GCN
    CONTINUE
    MC=M1(I,J)
    IF (MC.EO.O) GO TO 40
    DO 30 L=1,MC
    CDEF(1)=PA(I,J,L)
    COEF(2.)=PB(I,J,L)
    CALL POLEV (COEF,1,XF,GCY)
    GCD=GCY*GCD
30 CONTINUE
40 IF (GCD.ED.0.) GCD=CMPLX(1.,0.)
    GCN=GCN/GCO
    NC=NL(I,J)
    IF (NC.EO.0) GO TO }6
    DO 50 L=1,NC
    COEF(1)=ZC(I,J,L)
    COEF(2)=2D(I,J,L)
    COEF(3)=ZE(I,J,L)
    CALL POLEV (COEF, 2,XF,GCX)
    GCN=GCX*GCN
    CONTINUE
    MC=,12(I,J)
    GCD=CMPLX(1.,0.)
    IF (MC.EG.0) GO TO BO
    DO }70\textrm{L}=1,\textrm{MC
    CDEF(1)=PC(I,J,L)
    COEF(2)=PD(I,J,L)
    COEF(3)=PE(I,J,L)
    CALL POLEV (COEF,Z,XF,GCY)
    GCD=GCY*GCD
    COHTINUE
    CONTINUE
    IF (GCD.EQ.0.) GCD=CMPLX(1..0.)
    GC(I,J,K)=GAI:I(I,J)*GCN/GCD
    CONTINUE
    GC*G TRAINSFER FUNCTION
    HERE STARTS TRA`JSFER GC*G O.L. FREQUENCY RESPONSE
    CALL MATMUL {GC(1,1,K),G(1,I,K),T,GC,GC,GC,KIN,KOUT,KOUT,KIN,K,O,A
    1,B,B)
    RETURN
C
    END
```

SUGROUTINE INTER(S,T,R)
INTERPOLATION SUBPROGRAM
SUBPROGRAA INTERPOLATES SPECIFIED INPUT DATA IN COIJJUCTION WITH ADOPTS ROUTINE: MAGNITUDES ARE INYERPOLATED LOGARITHMICALLY, PHASES LINEARLY.

SUBPROGRAM VARIABLES:
S - CONPLEX LORER BOUND OF QUANTITY INTERPOLATED
T - CONPLEX UPPER BOUND DF QUANTITY INTERPOLATED
R - CUMPLEX RES!JLTANT OF ThE INTERPOLATION
COMPLEX S.T,R
DATA PI/3.14159205358979/
C
$x=\operatorname{SOR} T(\operatorname{CABS}(S) * \operatorname{CABS}(T))$
$Y=0$.
IF ($(x . G T .1 . E-10)$ GO TO 1
GO TO 2
continue
$U=\triangle T A V Z(A I M A G(S), R E A L(S))$
$V=A T A N Z(A I N A G(T), F E A L(T))$
IF(U.LT.0.) $V=V+2 . * P I$
IF (V.LT.0.) V=V+2.*PI
$Y=(U+V) / 2$.
IF (ABS $(U-V) . G T, P I) Y=Y-P I$
IF (ABS $(Y-U), G T . P I / Z.) Y=Y-P I$
$2 \quad R=C^{1 A P L} X(X * \operatorname{CoS}(Y), X * S I N(Y))$
RETURN
C
E'vo


```
    INTEGER A,B,C
    COMPLEX AC,BC,CC
    OIMENSION AC(A,B), BC(B,A), CC(A,A,ND), AR(A,B), BR(B,C), CR(A,C,N
    1D)
    I.F (NC.EG.1) GO TO 20
    DO 10 I=1,N
    OO 10 J=1,M
    CC(I,J,ND)=CMPLX (0.,0.)
    DO 10 K=1,L
    CC(I,J,ND)=CC(II,J,ND)+AC(I,K)*BC(K,J)
    RETURN
    DO 30 I=1,N
    DO 30 J=1,M
    CR(I,J,ND)=0.
    DO 30 K=1,L
    CR(I,J,ND)=CR(I,J,ND)+AR(I,K)*BR(K,J)
    RETURN
    ENO
                    SUBROUTINE NYQIST
    SUAPOUTINE NYGIST (N,G,NRHP,NCON,NCIRL,NZ,FMAX,F)
    COMPLEX G(1),F(1)
    DOUBLE PRECISION PI
    DATA PI /3.14159265358979D+00/
    KC=NCON/2
    LC=(NCOM+1)/2
    C1=ATAN2(AIMAG(G(1)).r1.0+REAL(G(1)))
    SUN=-CI+ARS(ATAN2(0.0,1.0+REAL(G(1))))*ABS(C1)/C1
    IF (KC.VE.LC) SU!M=0.0
    DO 10 I=2,N
    C2=\lambdaTAN2(AIMAG(G(I)),1.0+REAL(G(I)))
    DIFF=C2-C1
    IF (ABS(DIFF).GT.PI) DIFF=C2-C1+2.0*PI*ABS(C1)/C1
    SUNi=SUM-DIFF
    IF (AIMAG(F(I)).GT.FMAX) GO TO 20
    C1=C2
    I=N
20 SUM=+C2-ABS(ATAASZ(0.0.1.0+kEAL(G(1))))*ABS(C2)/C2+SUM
    SUA4=2.0*(SUM+C2)+PI*NCON
    SUR:=SUM+ABS(SUM)*PI/(4.0*SUM)
    HCIRL=SUH/(2.0*PI)
    NZ=NRHP+NCIRL
    RETURN
L
EIND
```


SUBROUTINE OUTPT

SUBROUTINE OUTPT ($N, K S Y M, K P O I N T, C T, O M E G A, I T E R, N M, K P T S, K M I N, S T B M, R Q$ 1, TYPE, ACTIVE,KIN,KOUT,ZA,ZE,ZC,ZD,ZE,PA,PB,PC,PD,PE,N1,NZ,M1,NZ,GA ZIA,KONT,A, O, C,KOLD)

SUBPROGRAM DESIGNED TO OUTPUT INFORMATION IN THREE AREAS AS DESIGNATED BY THE KEY N: KEY:

N=O, OUTPUT COMPENSATOR INFORMATION
N=1, OUTPUT FREQUENCY RESPONSE
$N=2$, OUTPUT. STAHILITY MARGINS INFORMATION
$f_{4}=3$. COMPLETE OUTPUT INFORMATION
INTEGER A, B, C
IITEGER TYPE, ACTIVE, XXP, ZDUMB
COMPLEX CT(1), OMEGA(1),X
DIMENSIGV GAJA, $(A, B), \operatorname{KONT}(A, B), N 1(A, B), N 2(A, B), \quad: 1(A, B), M 2(A, B)$
1, $Z A(A, B, C), Z b(A, B, C), Z C(A, R, C), Z D(A, B, C), Z E(A, B, C), P A(A, B, C)$
2, $P B(A, B, C), P C(A, B, C), P D(A, B, C), P E(A, B, C), \operatorname{KPTS}(1), \operatorname{STBM}(1), R Q$
3(1). ACTIVE(1), TYPE(1), KOLD(1)
DATA IBK,IAT,XXP,RADE /IH, 1H*,1HP,114.591559/
IF (N.ÉQ. Z) GO TO 170
IF (N.EQ.1) GO TO 110
IF (KSY:S.EQ.1) wRITE $(6,20)$
DO $100 \mathrm{I}=1, \mathrm{KIN}$
$00100 \mathrm{~J}=1, \mathrm{KOUT}$
IF (GAIN(I,J).EQ.O.) GO 1080
HRITE $(5,30)$ I, J,GAIN(I,J)
$N C=V 1(I, J)$
IF (IVC.NE.0) WRITE $(6,40)(Z A(I, J, L), Z B(I, J, L), L=1, N C)$
$N C=+!2(I, J)$
IF (NC.NE.0) WRITE (6,50) (ZC(I,J,L),ZD(I,J,L),ZE(I,J,L),L=I,NC)
$M C=M(1, J)$
IF (NC. ME.0) WRITE (6,60) (PA (I,J,L), PB(I,J,L),L=1,MC)
$M C=: 12(I, J)$
IF (MC.NE,0) : $\mathrm{HRITE}(6,70)(P C(I, J, L), P D(I, J, L), P E(I, J, L), L=1, M C)$
WRITE $(6,10)$ I,J,KUNT (I, j)
FORMAT ($0^{\circ} 0^{\circ} 5 X_{0}$. DC GAIN CONSTRAIMT FOR EACH CHANNEL (IF KONT $=1$, 1 aLLONED TO VARY; IF KONT = 2 , HELD CONSTANT)", $1,7 \times$, KONT ($, ~ I 3, *$,
$2^{\circ}, 13,{ }^{\circ}=$. 13,1)
FORIAT (/,5X, THE COMPENSATION ELEMENTS ARE DESCRIBED BY TRANSFER 1 FINCTIDNS IN", $/, 5 \times,{ }^{\circ}$ CASCADED FIRST AND SECOND ORDER FACTORS: $*, 1,3$

 $51^{\circ}: 14 x,{ }^{\prime} M Z^{\prime}, 1,31 x 0^{\prime} P R(P A+F B S) P R(P C+P D S+P E S * * 2)^{\circ}, 1,30$ 6x,'I=1 I I J=1 J J J\%/J

FORMAT (15X, 'COMPENSATOR COEFFICIENTS: $, 1,\left(15 X,{ }^{\prime} Z A=\prime, G 12.6,10 X\right.$. ${ }^{\prime}$

```
    128=*,G12.6))
    FORMAT (15X,'ZC = ',G12.6,10X,'ZD = ',G12.6.10X,'ZE = ',G12.6)
    FORMAT (15X,.PA = ',G12.6,10X,'PB = ',G12.6)
    FORMAT (15X,'PC = ',G12.6,10X,'PD = ',G12.6,10X,'PE = *,G12.6)
    GO TO 100
    WRITE (6,90) I,J
    FORMAT (10X,*COMPENSATOR(*,I3,*,',I3,*) HAS ZERO CONTRIBUTION.')
    CONTINUE
    IF (N.NE.3) RETURN
    WRITE (6,120) KSYM
    FIRNAT (/,5X, THE FREQUENCY RESPONSE OF SYSTEM NO. ",I3,* IS: ",/,
    17X,'DATA',10X, 'COMPLEX OMEGA',10X, 'COMPLEX CT',10X,"MAG & PHASE','
    2)
        L=1
    DO 140 K=1,KPOINT
    ZOUMB=1BK
    IF (K.NE.KOLD(L)) GO TO 130
    ZOUAH=IAT
    L=L+1
    CONTINUE
    X=CMPLX(CABS(CT(K)),ATAN2(AIMAG(CT(K)),REAL(CT(K)))*57.295779)
    WPITE (6,160) ZDUMB,K,OMEGA(K),CT(K),X
    WRITE (6,150)
    FORNAT ("O",T9,** DENOTES ORIGINAL FREQUENCY POINTS*)
    FORMAT (8X,A1,I 3,5X,2G10.4,5x,2G10.4,5X,2G10.4)
    IF (N.NE.3) RETURN
170 NRITE (6,180) KSYM,ITER
180 FORMAT ('0', 25x.'SYSTEM NO. ',I3,', ITERATION NO. *,I4)
    NO 270 1=1,NM
    K=KPTS(I)
    IF (I.EN.KMIN+1) GO TO 190
    IF (I.EQ.I) GO TO 220
    GO TO 240
    GRITE (6,200)
    FORNAT (*0',25X, 'ATTENUATEO FREQUENCY INFORMATION*/)
    WRITE (6,210)
    FORMAT ("U',TZ,'MD.',T7, 'MARGIN RADIUS',TZ6,'FREQUENCY',T41,'DESIR
    1EO HARGIN",T57,"MARGIN TYPE*,T70,*ACTIVE"/)
    GO TO 240
    WRITE (6,230)
    NRITE (6,210)
    FORMAT (%O',25X, 'RELATIVE STABILITY INFORMATION*/)
    XDuME=STBM(I)
    YDU"B=RQ(I)
    IF (TYPE(I).NE.XXP3) GO TO 250
    XDUMB=RADZ*ASIN(XDUNB/2.)
    YDUNB=R゙AOZ*ASIN(YDUMB/2.)
    WRITE (6, 2.60) I, XDUMB,ONEGA(K),YDUMB,TYPE(I), ACTIVE(I)
    FORMAT (* OT2,I2,T8,G10.4,T20,G10.4,T31,G10.4,T43,G10.4,T63,A1,T7
    12.A3)
    CONTINUE
    RETURN
    END
```


SUBROUTINE PARTAL

SUBROUTINE PARTAL COMEGA,NFREQ,CT;KPTS, TYPE,T,P,G;KSYM,CI,CI,WORKI $1, A, B, C, D, E, F, Z, P F X, P F Y, K I N, K O U T, Z A, Z B, Z C, Z D, Z E, P A, P B, P C, P D, P E, N 1, N$ 22,M1,M2,GAIN,KONT)

COMPLEX ANUM,PCG,G(A,B,D),OMEGA(D), $Q, X V, C T(D), D I S T, P G X(3), T(A, A, D)$ $1, P^{\prime}(B, A, D)$
IVTEGER A, B, C, D, E, F, Z
INTEGER TYPE,XXT
DIMENSION N1 $(A, B), N Z(A, B), M 1(A, B), M Z(A, B), Z A(A, B, C), Z B(A, B, C)$
1, $Z C(A, H, C), Z D(A, B, C), Z E(A, f, C), P A(A, B, C), P B(A, B, C), P C(A, B, C)$
2, $P D(A, B, C), P E(A, B, C), K O N T(A, B), \operatorname{GAIN}(A, B)$
DIMENSION KPTS(1), TYPE(1), XXT(4), PFX(E,Z), PFY(E,Z)
DATA IBLANK,XXT/4H ,1HG,1HP,1HS,1HA/
C
$N O P=0$
OO $190 \mathrm{k}=1$, NFREQ
KNHICH=KPTS(K)
SGN=+1.
IF (TYPE(K).ET.XXT(4)) SGN=m1.
IF (TYPE(K).EQ.XXT(1)) GO TO 10
IF (TYPE(K).ET.XXT(2)) GO TO 30
IF (TYPE(K).EU.XXT(3)) $Q=C M P L X(-1.00$)
IF (TYPE (K).EQ.XXT(4)) $0=$ CMPLX(0.,0.)
GO 1060
DO $20 \mathrm{~L}=0,1$
IF (AIMAG(CT(KWHICH+L))*AIMAG(CT(KWHICH+L-1)).LE.O.) GO TO 50 DO $40 L=0,1$ IF ((CABS (CT(KNHICH+L))-1.)*(CABS (CT (KWHICH+L-1))-1.).LE.0.) GO TO 150 DIST=CT(K.NHICH+L)-CT(KWHICH+L-I) $X V=C O N J G(C T(K G H I C H)+1$. DIST=CO:VJG(DIST)/CARS(DIST) DIST=CIAPLX(AIMAG(DIST),REAL(DIST)) IF (REAL (DIST*XV).GT.O.) DIST=-DIST Q=CT(K.NHICH)+5.*DIST
so DIST $=$ CONJG ($\sim O+C T(K W H I C H))$ XV=OMEGA (KWHICH) KINOT=0 LNOT=0
DO $180 \mathrm{I}=1, \mathrm{KIN}$
DO $180 \mathrm{~J}=1, \mathrm{KOUT}$
IOP=KONT (I,J)
CALL CRT ($2, K W H I C H, K S Y M, T(1,1, K W H I C H), K I N, K O U T, C T, P(1,1, K W H I C H), P C$
$1 \mathrm{G}, \mathrm{I}, \mathrm{J}, \mathrm{CI}, \mathrm{CI}$, WORKI, $A, B, D .3$
PCG=PCG*FAI!N(I,J)
NCOMD $=\mathrm{N} 1(\mathrm{I}, \mathrm{J})$
IF (NCOMD.EN.O) GO TO 90

```
    DO }80N=1,NCOM
    IF (N.GT.1) IOP=2
    ANUM=ZA(I,J,N)+ZB(I,J,N)*XV
    PGX(1)=G(I,J,KWHICH)/ANUM
    PGX(2)=PGX(1)*XV
    D0 70 L=1,2
    PFX(K,KNOT+L)=2.*REAL(PCG*PGX(L)*DIST*SGN)
    IF (IOP.EO.2) PFX(K,KNOT+1)=0.0
    K'NOT=KNOT+2
    NCOHD=N2(I,J)
    IF (NCOMD.EQ.O) GO TO 120
    DO 110 N=1,NCOMD
    IF (N,GT,1) IOP=2
    ANUM=ZC(I,J,N)+(ZD(I,J,N)+ZE(I,J,N)*XV)*XY
    PGX(1)=G(I,J,KNHICH)/ANUM
    PGX(2)=PGX(1)*XV
    PGX(3)=PGX(2)*XV
    DO 100 L=1,3
    PFX(K,KHOT+L)=2.*REAL(PCG*PGX(L)*DIST*SGN)
    IF (IOP.EG.2) PFX(K,KNOT+1)=0.0
    KNOT=KNOT +3
C DEHOMINATOR PARTIALS
120 NCOMD=141(I,J)
    IF (NCOMD.EQ.O) GD TO 150.
    DO 140 N=1,NCOMD
    IF (N.GT.1) IOP=2
    \DeltaNUS:=PA(I,J,N)+PB(I,J,N)*XV
    PGX(1)=G(I,J,KaHICH)/ANUM
    PGX(2)=PGX(1)*XV
    IF (IOP.E{.2) PGX(1)=CMPLX(0.,0.)
    DI 130 L=1,2
130 PFY(K,LNOT+L)=-2.*REAL.(PCG*PGX(L)*DIST*SGN)
    IF (IOP.E日.2) PFY(K,LNOT+1)=0.0
140 LHOT=LNOT+2
150 NCOMD=142(I,J)
    IF (INCOMD.EO.O) GO TO 180
    OO 170 N=1,NCOMD
    IF (N.GT.1) IOP=2
    AMU'K=PC(I,J,N)+(PD(I,J,N)+PE(I,J,N)*XV)*XV
    PGX(1)=G(I,J,KWHICH)/ANUM
    PGX(2)=PGX(1)*XV
    PGX(3)=PGX(2)*XV
    IF (IGF.E\cap.2) PGX(1)=CMPLX(0.,0.)
    DO 160 L=1.3
160 PFY(K,LNOT+L)=-2.*REAL(PCG*PGX(L)*DIST*SGN)
    IF (IOP.EN.2) PFY(K,LNOT +1) =0.0
    LNOT=LNOT+3
180 CONTINUE
190 CONTINUE
    RETURN
C
    END
```

```
                                    SUBROUTINE XCHECK
    SUBROUTINE XCHECK (KIN,KOUT,ZA,ZB,ZC,ZD,ZE,NI,NZ,DV,ZETA,PG,NAM,K
    1E,NRTR1,NRTRZ,LPV,A,B,E,D,E,F,KKK)
C
    INTEGER A,B,C,D,E,F
    DIMENSION ZA(A,B,C), ZB(A,B,C), ZC(A,B,C), ZD(A,B,C), ZE(A,B,C),
    11(A,B), NZ(A,B), PG(E,F), DV(1), KJUMP(3)
C
    00 100 I=1,KIN
    DO1 100 J=1,KOUT
    KI=N1(I,J)
    IF (K1.EQ.0) GO TO 50
    DO 40 K=1,K1
    IF (NRTR1.EQ.1.) GO TO 40
    IF (ZA(I,J,K).GT.I.E-05) GO TO 20
    IF (ZA(I,J,K).LT.0.) GO TO 110
    IF (DV(KKK+1).GE.0.) GO TO 20
    KRE=1
    DO 10 L=1,NAM
10 PG(L,KKK+1)=0.
    LPV=LPV-1
20 COTIINUE
    IF (ZR(I,J,K).GT.1.E-05) GO TO 40
    IF (ZB(I,J,K).L.T.O.) GO TO 110
    IF (DV(KKK+2).GE.0.) GO TO 40
    KRE=1
    DO 30 L=1,NAM
    PG(L,KKK+2)=0.
    LPV=LPV-i
    KKK=KKK+2
    K?=1v2(I,J)
    IF (K2.EQ.0) GO TO 100
    DO 90 K=1,k2
    IF (NRTRZ.EQ.1) GO TO 90
    WH=SQRT(ZZC(I,J,K)/ZE(I,J,K))
    ZT=TD(I,J,K)/(Z.*WN*ZE(I,J,K))
    IF (ZT.GE.ZETA+1.E-03) GO TO 90
    IF (ZT.LT.ZETA) GO TO 110
    P&N=(ZE(I,J,K)*DV(KKK+1)=ZC(I,J,K)*DV(KKK+3))/(2.*VN*ZE(I,J,K)**2)
    AINC=-STEP/PMG
    DEL=-AINC
    AN=SQRT(ZC(I,J,K)/ZE(I,J,K))
    ZET=ZD(I,J,K)/(Z.*Wis*ZE(I,J,K))
    IF (ZET.GE.ZETA+1.E-03) GO TO 50
    IF (ZET.LT.ZETA) GO TO 40.
    GO TO 50
4 0 ~ D E L = D E L / 2 . ~
    AINC=AINC*DEL*SGN
```

```
    A0=ZC(I,J,K)+A\cdotINC*DV (K2+1)
    AI=ZD(I,J,K)+AINC*DV (K2+2)
    AZ=ZE(I,J,K)+AINC*DV(K2+3)
    ZET=A1/(2.*AZ*SORT.(AO/AZ))
    IF (ZET.LT.ZETA) SGN==1.0
    IF (ZET.GE.ZETA+0.999E-03) SGN=1.0.
    IF (ZET.LT.ZETA) GO TO 40
    IF (ZET.GE.ZETA+0.999E-03) GO TO 40
    CALL SELECT (STEP,STPNEW,AINC*PMG)
    KRE=3
    K2=K2+3
60 CONTINUE
    RETURN
    SUEROIJTINE SELECT (STEP,STPNEW,STPTRY)
    IF (STEP.GE.O.) STPNEH=AMINI(STPNEW,STPTRY)
    IF (STFP.LT.O.) STPNEW=AMAXI.(STPNEW,STPTRY)
    RETURN
    ENO
        SUBROUTINE YCHECK
    SUBROUTINE YCHECK (KIN,KOUT,N1,N2,ZA,ZB,ZC,ZD,ZE,KRE,STEP,PMG,ZETA
    1,NRTR1,NRTRZ,DV,A,R,C,D,E,KZ,STPNEW)
    INTEGER A,B,C,D,E
    DIMENSION ZA(A,R,C), ZB(A,B,C), ZC(A,B,C), ZD(A,B,C), ZE(A,B,C),NN
    11(A,B),N己(A,B), DV(1)
    DO 60 I =1,KIN
    DO tO J=1,KOUT
    K1=Nl(I,J)
    IF (K1.EQ.0) GO TO }3
    DO 20 K=1,NK1
    IF (NRTRI.EN.1) GO TO 20
    IF (ZA(I,J,K).GE.O.) GO TO 10
    KRE=3
    DEL=2A(I,J,K)/DV(K2+1)
    CALL SELECT (STEP,STPNEN,(DEL+.000001)*PMG)
    IF (ZB(I,J,K).GE.O.) GO TO 2O
    KRE=3
    DEL=ZB(I,J,K)/DV(KZ+2)
    CALL SELECT (STEP,STPNEW,(DEL+.000001)*PMG)
20 K2=K2+2
30 CONTINUE
    K1=N2(I,J)
    IF (KI.EQ.0) 60 T0 60
    DO 50 K=1,K1
    IF (NRIRZ.EQ.1) GO TO 50
SGN=1.0
AINC=-STEP/PMG
DEL=-AINC
WN=SQRT(ZC(I,J,K)/ZE(I'J,K))
ZET=ZD(I,J,K)/(2.*WN*ZE(I,J,K))
```

```
        IF (ZET.GE.ZETA+I.E-03) GO TO 50
        IF (ZET.LT.ZETA) GO TO 40
        GO TO 50
    40
        AINC=AINC+DEL*SGN
        AO=ZC(I,J,K)+AINC*DV (K2+1)
        AI=2D(I,J,K)+AINC*DV (K2+2)
        AZ=2E(I,J.K)+AINC*DV(K2+3)
        ZET=A1/(2.*AZ*SORT(A0/A2))
        IF (ZET.LT.ZETA) SGN=-1.0
        IF (ZET.GE.ZETA+0.999E-03) SGN=1.0
        IF (ZET.LT.ZETA) GO TO 40
        IF (ZET.GE.ZETA+0.999E-03) GO TO 40
        CALL SELECT (STEP,STPNE 
        KRE=3
        K2=kZ+3
        CONTINUE
        RETURN
    C
        SUBROUTINE SELECT (STEP,STPNEN,STPTRY)
        IF (STEP.GE.0.) STPNEW=AMINI(STPNEN,STPTRY)
        IF (STEP.LT.O.) STPNE:H=AMAXI(STPNEW,STPTRY)
        RETURN
    C
        END.
```


REFERENCES

1. I. Flügge-Lotz, "Automatic Control in the Last Two Decades", AIAA Journal, Vol. 10, No. 6, June 1972, pp. 721-726.
2. Tommy W. Case, Jerrel R. Mitchell, W. L. McDaniel, Jr., "A Comparison of Three Computerized Design Algorithms for Control Systems", Proceedings of the 1976 Southeastern Symposium on System Theory, University of Tennessee, Knoxville, Tennessee, 1976.
3. James B. Nail, J. R. Mitchell, W. L. McDaniel, Jr., "Eigenvalue Encouragement Technique", Proceedings of the 1976 Southeastern Symposium on System Theory, Knoxville, Tennessee, April 1976.
4. Anthony Joseph Mancini, "Computer Aided Control System Design Using Fréquency Domain Specifications", A Thesis, Naval Postgraduate School, Monterey, California, June 1976.
5. Larry Paul Vines, "Computer Automated Design of Systems", A Thesis, Naval Postgraduate School, Monterey, California, June 1976.
6. Coffey, T. C., "Automatic Frequency Domain Synthesis of MuItiloop Control Systems", AIAA Journal, Volume 8, Number 10, October 1970.
7. Jerrel R. Mitchell, Willie L. McDaniel, Jr., "An Innovative Approach to Compensator Design", NASA Contractor Report, National Aeronautics and Space Administration, Washington, D. C., NASA CR-2248, May 1973.
8. Jerrel R. Mitchell, Willie L. McDaniel, Jr., "Preliminary Studies in the Development of Pole Placement Algorithms", Quarterly Report to the National Aeronautics and Space Administration, Marshall Space Flight Center, Alabama, NAS8-31568, December 1975.
9. Jerrel R. Mitche11, Willie L. McDaniel, Jr., "A Computerized Compensator Design Algorithm with Launch Vehicle Applications", Proceedings of 1976 Southeastern Symposium on System Theory, University of Tennessee, Knoxville, Tennessee, April 1976.
10. Jerrel R. Mitchell, "The Compensator Improvement Program Version VI", Final Report, NASA-ASEE Summer Faculty Fellowship Program, University of Alabama in Huntsville, Huntsville, AL, August 1976.
11. Jerrel R. Mitchell, Willie L. McDaniel, Jr., "Utilizing CIP to Design Compensation For Initially Closed-Loop Unstable Systems", Conference Record of the Ninth Annual Asilomar Conference on Circuits, Systems, and Computers, Monterey, California, Nov 1975.

