12 research outputs found

    Sperm competition-induced plasticity in the speed of spermatogenesis

    Get PDF
    Background: Sperm competition between rival ejaculates over the fertilization of ova typically selects for the production of large numbers of sperm. An obvious way to increase sperm production is to increase testis size, and most empirical work has focussed on this parameter. Adaptive plasticity in sperm production rate could also arise due to variation in the speed with which each spermatozoon is produced, but whether animals can respond to relevant environmental conditions by modulating the kinetics of spermatogenesis in this way has not been experimentally investigated. Results: Here we demonstrate that the simultaneously hermaphroditic flatworm Macrostomum lignano exhibits substantial plasticity in the speed of spermatogenesis, depending on the social context: worms raised under higher levels of sperm competition produce sperm faster. Conclusions: Our findings overturn the prevailing view that the speed of spermatogenesis is a static property of a genotype, and demonstrate the profound impact that social environmental conditions can exert upon a key developmental process. We thus identify, to our knowledge, a novel mechanism through which sperm production rate is maximised under sperm competition

    Sex allocation adjustment to mating group size in a simultaneous hermaphrodite

    No full text
    Sex allocation theory is considered as a touchstone of evolutionary biology, providing some of the best supported examples for Darwinian adaptation. In particular, Hamilton's local mate competition theory has been shown to generate precise predictions for extraordinary sex ratios observed in many separate-sexed organisms. In analogy to local mate competition, Charnov's mating group size model predicts how sex allocation in simultaneous hermaphrodites is affected by the mating group size (i.e., the number of mating partners plus one). Until now, studies have not directly explored the relationship between mating group size and sex allocation, which we here achieve in the simultaneously hermaphroditic flatworm Macrostomum lignano. Using transgenic focal worms with ubiquitous expression of green-fluorescent protein (GFP), we assessed the number of wild-type mating partners carrying GFP+ sperm from these focal worms when raised in different social group sizes. This allowed us to test directly how mating group size was related to the sex allocation of focal worms. We find that the proportion of male investment initially increases with increasing mating group size, but then saturates as predicted by theory. To our knowledge, this is the first direct test of the mating group size model in a simultaneously hermaphroditic animal

    No evidence for strong cytonuclear conflict over sex allocation in a simultaneously hermaphroditic flatworm

    No full text
    Abstract Background Cytoplasmic sex allocation distorters, which arise from cytonuclear conflict over the optimal investment into male versus female reproductive function, are some of the best-researched examples for genomic conflict. Among hermaphrodites, many such distorters have been found in plants, while, to our knowledge, none have been clearly documented in animals. Methods Here we provide a quantitative test for cytonuclear conflict over sex allocation in the simultaneously hermaphroditic flatworm Macrostomum lignano. We used a quantitative genetic breeding design, employing pair-wise crosses of 2 × 15 independent inbred lines, to partition the phenotypic variance in several traits (including sex allocation) into its nuclear and cytoplasmic components. Results Although the nuclear genetic background had a significant effect on all traits analyzed, we found significant cytoplasmic genetic variation only for ovary size, there explaining just 4.1% of the variance. A subsequent statistical power analysis showed that the experimental design had considerable power to detect cytonuclear interactions. Conclusion We conclude that there were no strong effects of cytonuclear conflict in the studied populations, possibly because the usually compact mitochondrial genomes in animals have a lower evolvability than the large mitochondrial genomes in plants or because the sampled populations currently do not harbor variation at putative distorter and/or the restorer loci
    corecore