3 research outputs found

    Hamiltonian reduction and supersymmetric mechanics with Dirac monopole

    Full text link
    We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4{\cal N}=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4{\cal N}=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparison with previous work is also carried out.Comment: 9 pages, LaTeX file, PACS numbers: 11.30.Pb, 03.65.-w, accepted for publication in PRD; minor changes in the Conclusion, the Bibliography and the Acknowledgemen

    Massless geodesics in AdS5Ă—Y(p,q)AdS_5\times Y(p,q) as a superintegrable system

    Get PDF
    A Carter like constant for the geodesic motion in the Y(p,q)Y(p,q) Einstein-Sasaki geometries is presented. This constant is functionally independent with respect to the five known constants for the geometry. Since the geometry is five dimensional and the number of independent constants of motion is at least six, the geodesic equations are superintegrable. We point out that this result applies to the configuration of massless geodesic in AdS5Ă—Y(p,q)AdS_5\times Y(p,q) studied by Benvenuti and Kruczenski, which are matched to long BPS operators in the dual N=1 supersymmetric gauge theory.Comment: 20 pages, no figures. Small misprint is corrected in the Killing-Yano tensor. No change in any result or conclusion
    corecore