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Massless geodesics in AdS5 × Y (p, q) as a superintegrable
system

Emilio Rub́ın de Celis ∗and Osvaldo P. Santillán †

Abstract

A Carter like constant for the geodesic motion in the Y (p, q) Einstein-Sasaki geometries
is presented. This constant is functionally independent with respect to the five known
constants for the geometry. Since the geometry is five dimensional and the number of
independent constants of motion is at least six, the geodesic equations are superinte-
grable. We point out that this result applies to the configuration of massless geodesic in
AdS5×Y (p, q) studied by Benvenuti and Kruczenski [70], which are matched to long BPS
operators in the dual N=1 supersymmetric gauge theory.

1. Introduction

The present work deals with a superintegrable problem. Roughly speaking, a mechanical system
is called superintegrable if the number of its functionally independent constants of motion is
larger than its number of degrees of freedom.

The classical example of a superintegrable system is the Kepler one. As is well known, for
the motion in a generic central field, the energy E and the component of the angular momenta
perpendicular to the plane of motion Lz are conserved. Since the motion takes place in a
plane, all these problems are integrable. For the Kepler problem, there is a further conserved
quantity namely, a component of the Runge-Lenz vector. The set of these three constant of
motion is functionally independent, therefore the Kepler problem is superintegrable. Similar
considerations apply to the central harmonic oscillator in three dimensions. For both systems,
the closed trajectories are ellipses.

The maximal number of functionally independent constant of motion that a mechanical
system with n degrees of freedom may admit is 2n − 1. Systems possessing this number of
constants of motion are known as maximally superintegrable. For n = 2 a maximal super-
integrable system admits three constants of motions. Thus the Kepler problem is maximally
superintegrable.

Superintegrable systems are gifted with special properties, some of them are intrinsic and
some others depends on the problem under consideration. For the Kepler motion, some in-
teresting features emerge when upon quantization. The Runge-Lenz vector becomes, by the
correspondence principle, an operator which commutes with the hamiltonian of the particle.
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The algebra constituted by the hamiltonian, the angular momentum and the Runge-Lenz vec-
tor is not closed, in fact is an infinite dimensional twisted loop algebra [1]. But when restricted
to subspaces of constant negative energy, which correspond to bound states, the resulting sym-
metry algebra is isomorphic to SO(4). Thus the expected symmetry group for a central field,
which is SO(3), is enhanced for the Newton potential to SO(4). This enhancement explains
the accidental degeneration of the energy levels of the hydrogen atom, i.e, the independence
of the energy levels with respect to the total angular momenta of the particle. In fact Pauli,
Bargmann and Fock [2]-[4] have shown that, due to the presence of the Runge-Lenz operator, it
is possible to obtain the bound state spectra of the hydrogen without solving the Schrodinger
equation explicitly. This suggest that the discovery of superintegrability for a given problem
may dramatically simplify the study of its properties.

It was Sommerfeld who pointed out that if, for a given potential, the Hamilton-Jacobi
equation is separable in more than one coordinate system, then the problem is superintegrable
[5]. This statement was extensive studied by Smorodinskyi, Winternitz and collaborators, who
were able to classify the potentials in two dimensions which are separable in more than one
coordinate system [6]-[7]. For three dimensional flat space, it was Eisenhart who classified the
possible coordinates systems for which separation takes place, together with the form of the
potentials that permits such separation [9]-[10]. Further investigation was made in [8] where the
three dimensional potentials that are separable in spherical coordinates and one more coordinate
system were found. The remaining possibilities in three dimensions were classified in [11] later
on.

The achievements described above motivated intense research in the subject. In recent years
several integrable systems were found, some examples are in [12]-[52] and references therein.
These examples consist in a wide variety of physical systems such as the Kepler problem in
arbitrary dimensions and its extensions in presence of magnetic monopoles, and generalizations
of known systems to spaces of non zero curvature in several dimensions.

In the present work it will be shown that the equations for the geodesic motion over the
Einstein-Sasaki metric defined on the Y (p, q) manifolds discovered in [53]-[54] are superinte-
grable. The main technical tool for obtaining this result are Killing and Killing-Yano tensors
[55]. These tensors play a significant role for the integrability of the geodesic equations in the
rotating black hole background [56]-[63]. Several work related to this topic were reviewed in
[64], and more recent references are [65]-[69].

The present text is organized as follows. In section 2.1 the main features of Einstein-Sasaki
manifolds and Calabi-Yau cones are briefly reviewed, together with a description of the Y (p, q)
geometries. In section 2.2 the defining equations for the configurations of massless geodesics
on AdS5 × Y (p, q) considered in [70] are shown to be integrable. The material in section 2
is, of course, not new. In section 3.1 the main features of Killing and Killing-Yano tensors
as generators of hidden symmetries are reviewed. These tools are applied in section 3.2 to
show that the configurations of massless geodesics mentioned above admit a further constant of
motion which is functionally independent with respect to the ones found in [70]. This is checked
explicitly, and it is concluded that the configuration of massless geodesics in the geometry is
superintegrable. In section 4 some consequences related this hidden symmetry are derived. It
is found that the superparticle worldline action [71]-[73] with the Y (p, q) geometries as space-
time metric admit exotic supersymmetries. Additionally, it is found that this symmetry is not
anomalous, in the sense that it corresponds to an operator which commutes with the laplacian
defined over the Y (p, q) geometry. Properties of the Dirac operator are also briefly commented.
In section 5, some open perspectives and future lines of work are discussed. Although the



validity of our results are checked in the text, some mathematical statements which were used
for obtaining them are collected in the appendix. This is in order to separate the statement of
the results from the description of how they were obtained, for sake of clarity.

2. Preliminar material

2.1 A brief description of the Einstein-Sasaki metrics on Y (p, q)

Since this work is related to Einstein-Sasaki metrics, it will be convenient to give a brief
description of their main properties. Einstein-Sasaki metrics are directly connected to non
compact Calabi-Yau cones. Recall that a non compact Calabi-Yau metric g is by definition a
2n dimensional one defined over a space M2n and whose holonomy is SU(n) or a subgroup of
SU(n). All these metrics are in particular Ricci flat, and there exist always a local choice of
the basis ea for which the metric takes the diagonal form

g = δabe
a ⊗ eb,

and for which the symplectic two form

ω = e1 ∧ e2 + ..+ e2n−1 ∧ e2n, (2.1)

and the (n, 0) form
Ω = (e1 + ie2) ∧ ... ∧ (en−1 + ien) (2.2)

are closed. The converse of these statements are also true, that is, a non compact metric
satisfying the conditions enumerated above is Calabi-Yau. Manifolds for which dω = 0 are
sympletic. The closure of Ω implies that the almost complex structure J defined by ω(·, ·) =
g(·, J ·) is integrable and thus, the manifold is complex. Complex sympletic manifolds of this
type are Kahler and therefore, any Calabi-Yau metric is automatically Kahler. In fact, a Ricci
flat Kahler metric is locally Calabi-Yau. Details of these assertions can be found in standard
books on the subject [74].

The relation between Einstein-Sasaki manifolds and Calabi-Yau cones is as follows. Consider
the family of 2n dimensional cones given by

g2n = dr2 + r2g2n−1, (2.3)

with metric g2n−1 which does not depends on the coordinate r and is defined over a 2n − 1
manifold. The distance element (2.3) is singular at r = 0 unless g2n−1 is the canonical metric on
the sphere S2n−1. If the cone (2.3) is Calabi-Yau, then g2n−1 is known as Einstein-Sasaki. This
relation can be taken as the definition of an Einstein-Sasaki metric, in a local sense. In fact,
since a Calabi-Yau cone is Ricci flat, the metric g2n−1 is Einstein with non zero cosmological
constant. The converse of these statements are all true, that is, any Einstein-Sasaki metric
defines a Calabi-Yau cone by (2.3). Several properties for these metrics are collected in the
appendix but were extensively reviewed in [75]-[76].

The Einstein-Sasaki metrics which we will be concerned with are the ones defined over the
Y (p, q) manifolds [53]-[54]. There exist a local coordinate system for which the distance element
takes the following form

gp,q =
1− y

6
(dθ2 + sin2 θdφ2) +

dy2

6p(y)
+
q(y)

9
(dψ − cos θdφ)2



+w(y)[dα+ f(y)(dψ − cos θdφ)]2 (2.4)

with

w(y) = 2
a− y2

1− y
,

q(y) =
a− 3y2 + 2y3

a− y2
, (2.5)

f(y) =
a− 2y + y2

6(a− y2)
,

and

p(y) =
w(y)q(y)

6
=
a− 3y2 + 2y3

3(1− y)
(2.6)

The coordinates (θ, φ, y, α, ψ) take values in the range

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, y1 ≤ y ≤ y2, (2.7)

0 ≤ α ≤ 2πl, 0 ≤ ψ ≤ 2π.

The constant a appearing in the metric and the constants y1,2 and l determining the interval
of the values of the coordinates can be expressed in terms of two integers p y q defining the
manifold

a = 3y21 − 2y31,

l =
q

3q2 − 2p2 + p
√
4p2 − 3q2

,

y1,2 =
1

4p

(
2p∓ 3q −

√
4p2 − 3q2

)
.

The constants y1,2 are the zeroes of the function p(y) appearing in the expresion for the metric.
In addition, there is a third zero for p(y) given by y3 =

3
2
− y1 − y2. A global analysis of these

metrics can be found in [54].
The coordinate change α = −β

6
− ψ′

6
, ψ = ψ′ take the distance element (2.4) to the following

form

gp,q =
1− y

6
(dθ2 + sin2 θdφ2) +

dy2

6p(y)
+

1

36
q(y)w(y)(dβ + cos θdφ)2 (2.8)

+
1

9
[dψ′ − cos θdφ+ y(dβ + cos θdφ)]2,

Note that this expression is of the form

gp,q =
1

9
(dψ′ + A)2 + g4, (2.9)

with the 1-form A given by

A = − cos θdφ+ y(dβ + cos θdφ), (2.10)

and the four dimensional metric g4 given by

g4 =
1− y

6
(dθ2 + sin2 θdφ2) +

dy2

6p(y)
+

1

36
q(y)w(y)(dβ + cos θdφ)2. (2.11)



From (2.9)-(2.11) it follows that the vector field V = ∂ψ′ is Killing. The form (2.9) is quite
general in the theory of Einstein-Sasaki manifolds [75]-[76]. The Killing vector field is known
as the Reeb vector field and the four dimensional metric is in general Kahler Einstein, with
Kahler form ω = dA. Einstein-Sasaki metrics are locally U(1) fibrations over a Kahler-Einstein
manifolds in general (see appendix).

2.2 Massless strings in AdS5 × Y (p, q) as an integrable system

The Y (p, q) geometries described in the previous subsection are relevant in the context of the
AdS/CFT correspondence [77]. For instance, the study of semiclassical strings in backgrounds
of the form AdS5 × Y (p, q) with the local distance element

g10 = −dt2 cosh2ρ+ dρ2 + sinh2ρ dΩ2
3 + gp,q, (2.12)

together with their conserved quantities gives information about the anomalous dimensions of
certain N = 1 supersymmetric gauge theory, by the gauge/gravity duality [?]. A particular
configuration of interest is given by the non massive geodesics in the reduced metric

g = −dt2 + ds2p,q = −dt2 + gabdx
adxb, (2.13)

which describes a particle like limit of the strings. In (2.13), gab denotes the metric Y (p, q)
described in (2.4), t is the global time coordinate in AdS5, the non massive point like string is
located in ρ = 0 and the movement takes place in the internal space Y (p, q). The action for
such particle limit configuration is

S =

√
λ

2

∫
dτ
(
−ṫ2 + gabẋ

aẋb
)

(2.14)

where
√
λ = (R/ls)

2 is the effective string tension. The equations of motion should be supple-
mented with the null geodesic constraint

−ṫ2 + gabẋ
aẋb = 0. (2.15)

The Euler-Lagrange equation for t gives that t = Pt τ with Pt the conjugate momenta of t. Pt
is then constant and represent the energy of the string configuration. In these terms the action
is reduced to

S =
∫
dτL =

√
λ

2

∫
dτ(gabẋ

aẋb)

=

√
λ

2

∫
dτ
{
1− y

6
(θ̇2 + sin2 θφ̇2) +

1

w(y)q(y)
ẏ2 +

q(y)

9
(ψ̇ − cos θφ̇)2

+w(y)[α̇+ f(y)(ψ̇ − cos θφ̇)]2
}
, (2.16)

which describes a free particle in the Einstein-Sasaki geometry. The conjugate moments are by
definition

Pa =
∂L

∂ẋa
(2.17)

and in terms of these moments the Hamiltonian is expressed as

H =
1

2
gabPaPb. (2.18)



It can be seen from the isometries of (2.4) that the quantities Pφ, Pψ y Pα are conserved.
Additionally, the square of the SU(2) angular momenta

J2 = P 2
θ +

1

sin2 θ
(Pφ + cos θPψ)

2 + P 2
ψ, (2.19)

is also conserved. The full set of momenta can be expressed in terms of the velocities as follows

1√
λ
Py =

1

6p(y)
ẏ, (2.20)

1√
λ
Pθ =

1− y

6
θ̇, (2.21)

1√
λ
(Pφ + cos θPψ) =

1− y

6
sin2 θφ̇, (2.22)

1√
λ
(Pψ − f(y)Pα) =

q(y)

9

(
ψ̇ − cos θφ̇

)
, (2.23)

1√
λ
Pα = w(y)

(
α̇ + f(y)

(
ψ̇ − cos θφ̇

))
(2.24)

and in these terms the Hamiltonian may be expressed as

2λH = λκ2 =
1

2
6p(y)P 2

y +
6

1− y

(
J2 − P 2

ψ

)
+

1− y

2(a− y2)
P 2
α (2.25)

+
9(a− y2)

a− 3y2 + 2y3

(
Pψ − a− 2y + y2

6(a− y2)
Pα

)2

.

In the last equation formula (2.15) has been taken into account, in order to related κ with H .
Thus there are five functionally independent conserved quantities for the problem namely Pφ,
Pψ, Pα, J

2 y H and the equations defining the problem constitute an integrable system. The
purpose of the following sections is to present a further conserved quantity which is functionally
independent with respect to these. The presence of this quantity means that the problem is
superintegrable.

3. Superintegrability of the massless strings in AdS5 ×
Y (p, q)

The main technical tool for the following discussion will be Killing and Killing-Yano tensors.
We review their role for finding constants of motion for particle actions such as (2.14). After
this brief review, we present explicit Killing and Killing-Yano tensors for the Y (p, q) geometries.
This result will imply that the geodesic equations for this geometry is a superintegrable system.
We leave for the appendix the technical details for the construction, for sake of clarity.



3.1 Killing and Killing-Yano tensors

The motion of a free particle on a geometry (M, gµν) takes place along a geodesic. The set of
geodesics for the geometry is described by the following action

S =
∫ τ1

τ0

L dτ =
∫ τ1

τ0

1

2
gµν(x)ẋ

µẋνdτ, (3.26)

in particular (2.14) is of this form. The variation of (3.26) with respect to infinitesimal trans-
formations of the trayectory δx and δẋ is

δS =
∫ τ1

τ0

[
δL

δxµ
− d

dτ

(
δL

δẋµ

)]
δxµdτ +

∫ τ1

τ0

d

dτ

(
δL

δẋµ
δxµ

)
dτ (3.27)

=
∫ τ1

τ0

[
− δxµgµν

Dẋν

Dτ
+

d

dτ

(
δxµpµ

)]
dτ ,

with

pµ =
δL

δẋµ
= gµν ẋ

ν , (3.28)

the conjugated moment of the particle. For variations with fixed endpoints the total derivative
in (3.27) can be discarded. The variation will then vanish if and only if the equations of motion

Dẋµ

Dτ
= ẍµ + Γµναẋ

ν ẋα = 0 (3.29)

are satisfied. Here Γµνα denotes the usual Christoffel symbols constructed in terms of the metric
gµν

Γkij =
gkl

2
(gil,j + gjl,i − gij,l), (3.30)

and the first two terms of (3.29) are simply the definition of the derivative Dẋν

Dτ
. The system of

equations (3.29) states that the free particle in the geometry moves along a geodesic.
Consider now variations δxµ = Kµ without fixed endpoints. In this situation the time

derivative can not be ignored. By taking into account the equations of motion (3.29) it follows
that

δS =
∫ τ1

τ0

δL dτ =
∫ τ1

τ0

d

dτ

(
Kµpµ

)
dτ. (3.31)

If in addition δxµ = Kµ is such that δS is zero, then this transformation is a local symmetry
of L. From (3.31) it follows that the quantity

EK = Kµẋ
µ, (3.32)

is a constant of motion associated to the symmetry. Thus, there exist a constant of motion for
every symmetry the lagrangian (3.26) admits. A well known example of symmetries are the
usual isometries, which corresponds to local variations of the form δxµ = Kµ(x) which leave
the action invariant. For them, the vanishing of (3.31) gives that

d

dτ

(
Kµẋ

µ

)
= ẋν∇νKµẋ

µ +Kµ

Dẋµ

Dτ
= 0. (3.33)

But since the first term is zero due to (3.29) it follows that

∇(νKµ) = 0, (3.34)



is satisfied for the generators of the isometry. Here the parenthesis denote the symmetrization
operation. The vectors satisfying (3.34) are known as Killing vectors and are by definition the
generators of the isometries. Nevertheless, the isometries are not the most general symmetries.
One may consider for instance transformations of the form δxµ = K(x, ẋ), which are local in
the phase space (xµ, ẋµ). This form is quite general, since any dependence in higher order time
derivatives such that ẍ will be reduced to a combination of (x, ẋ) by the equations of motion
(3.29). Given such a symmetry one may impose a Taylor like expansion of the form

δxµ = Kµ +Kµ
αẋ

α +Kµ
αβ ẋ

αẋβ + ..., (3.35)

with tensors Kµ
µ1..µn

(x) independent of the velocities ẋi. In these terms, it may be shown that
(3.35) is a symmetry of (3.26) when

∇(µKµ1..µn) = 0, (3.36)

is satisfied. The reasoning for reaching this conclusion is completely analogous to the one
giving (3.34) and in fact (3.36) are a generalization of the Killing condition for symmetric
tensors of higher order. The tensors satisfying that condition are known as Killing tensors and
the quantities

Cn = Kµ1..µn ẋ
µ1 ..ẋµn , (3.37)

are all constants of motion.
The constants (3.37) are a homogeneous polynomial expressions in the velocities whose

degree is equal to the order of the associated Killing tensor. For tensors of order larger than
one, the corresponding symmetries are not as visual or intuitive as usual isometries. For this
reason these are known as hidden symmetries.

There exist another important generalization of the Killing vectors, which are the Killing-
Yano tensors [55]. Although several of their properties has been reviewed for instance in
[78] we briefly state their main properties. Killing vectors and Killing tensors generate scalar
constants of motion (3.37). This scalar quantity of course takes the same value along the
geodesic where the particle moves. If instead tensor ”conserved” quantities are considered,
one should compare its components in different points on the manifolds. This requires parallel
transport. The statement that a tensor quantity Cµ1...µn−1

is conserved then means that it is
parallel transported along the geodesic. This is satisfied when

ẋα∇αCµ1...µn−1
= 0. (3.38)

A Killing-Yano tensor fµ1...µn is an antisymmetric one and which generate tensor ”constants”
of motion linear in the velocities

Cµ1...µn−1
= fµ1...µn−1µẋ

µ. (3.39)

The parallel transport condition (3.38) implies that

fµ1...µn−1(α;β) = 0. (3.40)

This is a generalization of the Killing vector equation for antisymmetric tensors of higher order.
The square

C2 = Cµ1...µn−1
Cµ1...µn−1 = fµ1...µn−1µf

µ1...µn−1

ν ẋµẋν (3.41)



is obviously a constant of motion quadratic in the velocities. This means that the ”square”

Kµν = fµ1...µn−1µf
µ1...µn−1

ν , (3.42)

is a Killing tensor of order two. This result is usually paraphrased by saying that the square
of a Killing-Yano tensor fµ1...µn−1µ of arbitrary order is a Killing tensor Kµν of order two. This
statement is also true when the Killing tensor is constructed out of two different Killing-Yano
tensors as follows

Kµν = f
(1)
µ1...µn−1(µ

f
(2)µ1...µn−1

ν) ,

but this will not be relevant in the following analysis.

3.2 A new cuadratic constant for the Y (p, q) geometries

In the present section a further quadratic constant of motion for the Y (p, q) manifolds will be
introduced. The technical details of the construction are described in the Appendix but their
validity will be shown below.

Our main statement is that the following tensor

Kµν =




Kθθ 0 0 0 0
0 Kφφ 0 Kφβ Kφψ′

0 0 Kyy 0 0
0 Kβφ 0 Kββ Kβψ′

0 Kψ′φ 0 Kψ′β Kψ′ψ′




(3.43)

whose components are explicitly

Kθθ =
4
3
(1− y)

Kφφ = 1
9
{[1 + cos(2θ)][q(y)w(y) + 8y2] + cos(2θ)[2− 10y] + 14− 22y}

Kyy =
8

q(y)w(y)

Kββ = 2
9
[q(y)w(y) + 8y2]

Kψ′ψ′ = 16
9

Kφβ = Kβφ = 2
9
[q(y)w(y) + 8y2 − 8y] cos(θ)

Kφψ′ = Kψφ = 16
9
(y − 1) cos(θ)

Kβψ′ = Kψ′β = 16
9
y,

(3.44)

is a Killing one. These assertion was checked with the help of the Ricci package of the Wolfram
Mathematica program, which gives as a result that K(µν;λ) = 0 for every choice of indices. This
means that the infinitesimal transformation δẋµ = Kµ

α ẋ
α represents a hidden symmetry for the

geodesic motion in the Y (p, q) Einstein-Sasaki metric (2.8). The associated constant of motion
is

C = Kµν ẋ
ν ẋµ = Kθθθ̇

2 +Kφφφ̇
2 +Kyy ẏ

2 +Kβββ̇
2 +Kψ′ψ′ψ̇′

2
(3.45)



+2Kφβφ̇β̇ + 2Kφψ′ φ̇ψ̇′ + 2Kβψ′ β̇ψ̇′.

By going to the coordinates (θ, φ, y, α, ψ) which takes the metric to the form (2.4) the constant
may be expressed as follows

C =
4

3
(1− y)θ̇2 +

8

q(y)w(y)
ẏ2 + 8

[
q(y)w(y) + 8y2

]
α̇2 +

{
16
[
q(y)w(y) + 8y2

]
− 16

3

}
α̇ψ̇

+
1

9

{
[1 + cos (2θ)]

[
q(y)w(y) + 8y2

]
+ cos(2θ) [2− 10y] + 14− 22y

}
φ̇2 − 24

9
[q(y)w(y)

+8y2 − 8y
]
cos(θ)φ̇α̇ +

{
32

9
(y − 1) cos θ − 24

9

[
q(y)w(y) + 8y2 − 8y

]
cos(θ)

}
φ̇ψ̇

+
{
16

9
− 64

3
y + 8

[
q(y)w(y) + 8y2

]}
ψ̇2. (3.46)

The results presented above are not enough to state that the geodesic equations on Y (p, q) are
superintegrable. This will be the case if if the set {Pφ, Pψ, Pα, J2, H, C} constitute a functionally
independent set of constants of motion for the massless geodesics on AdS5 × Y (p, q) geometry
considered in previous sections. To prove the functional independence one should construct the
(d+ 1)× 2d Jacobian

J =
∂(Pφ, Pψ, Pα, J

2, H, C)

∂(θ, φ, y, α, ψ, θ̇, φ̇, ẏ, α̇, ψ̇)
(3.47)

with d = 5 and to calculate its rank. The result is

Rank(J) = 6, (3.48)

and was also obtained by use of the Wolfram Mathematica program. Therefore it is safe to say
that the configuration of massless geodesics on AdS5 × Y (p, q) defined in previous sections are
superintegrable, since the number of degrees of freedom is five and the number of functionally
independent constants of motion is at least six.

4. Comparison with the literature

The purpose of this section is to derive some features related to the presence of the quadratic
constant (3.46) for the Einstein-Sasaki Y (p, q) geometries. Our analysis will rely in some
standard results in the literature, which we will cite explicitly below.

4.1 Separability of the Laplace and the Dirac operators

The Killing tensor (3.46) is the square of a Killing-Yano 3-form Kµν = fµαβf
αβ
ν (see Appendix).

The explicit expression of this 3-form is

f =
1

9
[(1− y) sin θ dθ ∧ dφ ∧ dψ′ − cos θ dθ ∧ dy ∧ dψ′ + dy ∧ dβ ∧ dψ′ (4.49)

+ sin θ y(1− y) dθ ∧ dφ ∧ dβ − dφ ∧ dy ∧ dβ],
The first implicance is that the hidden symmetry that the Killing tensor (3.46) generates is not
anomalous. This statement may be explained as follows. The quantum mechanical analog of
the hamiltonian for the free particle in a curved geometry is the laplacian

∆ = ∇µ(g
µν∇ν).



Any Killing vector V = V µ∂µ for gµν is in correspondence with a quantum mechanical operator

V̂ = V µ∇µ which commutes with the laplacian ∆ defined above. But this is not the case for
Killing tensors [60], unless some extra conditions are satisfied. In fact, the commutator of the
operator K̂ = ∇µ(K

µν∇ν) associated to the Killing tensor Kµν with the laplacian ∆ is given
by [60]

[K̂, Ĥ] = −4

3
∇ν(R

[ν
µK

σ]µ)∇σ,

which is not zero in general. This means that the symmetry a Killing tensor generates is
anomalous unless the integrability condition

R
[j
i K

k]i = 0, (4.50)

is satisfied. This condition holds when the space is Einstein Rij = Λgij, or when the Killing
tensor is the square of a Killing-Yano tensor [55]-[61]. Both conditions are satisfied for the
Y (p, q) geometries, therefore the hidden symmetry that (3.34) generates is not anomalous.

The presence of a Killing-Yano tensor like (4.49) is also relevant for studying the separability
of the Dirac operator in the geometry [79]-[80]. For geometries admiting spinors one can consider
an irreducible representation of the Clifford algebra, which is composed by elements ea for which

eaeb + ebea = gab. (4.51)

The Dirac operator in the geometry is

D = ea∇Xa
. (4.52)

Given an arbitrary p-form fµ1...µp one may construct an operator Df with special properties. It
is given explicitly as

Df = Lf − (−1)pfD, (4.53)

with

Lf = eaf∇Xa +
p

p+ 1
df +

n− p

n− p + 1
d∗f. (4.54)

By defining the graded commutator

{D,Df} = DDf + (−1)pDfD, (4.55)

it follows from (4.53) and (4.52) that

{D,Df} = RD, R =
2(−1)p

n− p+ 1
d∗fD. (4.56)

For a Killing-Yano p-form fµ1...µp it may be shown from the definition (3.40) that d∗f = 0 and
therefore R = 0. By comparing this with (4.56) it follows immediately that for any Killing-Yano
tensor fµ1...µp of arbitrary order there exist an operator Df acting on spinors and whose graded
commutator with the Dirac operator D is zero [79]. We remark that for p = 3, as in (4.49), the
graded commutator becomes the usual commutator.



4.2 Exotic supersymmetries

In addition to the applications described in the previous subsection, the presence of a Killing-
Yano tensors in a manifold M with metric gµν has applications related to the worldline action
for the superparticle described in [71]-[73]. This action can be writen in terms of a superfield
X which maps a supermanifold parameterized by two coordinates (t, θ) into M . The variable
θ is a Grassman variable, which means that θ2 = 0. The worldline action is

I =
i

2

∫
dtdθgµνD

µ∂tX
ν ,

and it is supersymmetric by construction. Here D is the worldline superspace derivate, for
which D2 = i∂t. In addition to the usual supersymmetries, if the space-time metric gµν admits
a set Killing-Yano tensors f iµ1...µp there appear new symmetries for the action of the form [83]

δXµ = ǫif
i
µ1...µp

DXµ1 ..DXµp ,

with ǫi infinitesimal parameters. These symmetries imitate the supersymmetry property of
mixing the bosonic and fermionic components of the superfield X , but their algebra is not the
supersymmetry algebra. Additionally, they are generated by space-time forms. For this reason
they are sometimes known as ”exotic supersymmetries” [81]-[82]. Thus we conclude from (4.49)
that the superparticle worldline action defined on the Y (p, q) geometries admits at least one
exotic supersymmetry.

5. Discussion and open perspectives

In the present work a Carter like constant for the Y (p, q) Einstein-Sasaki metrics was con-
structed. The constant we found is functionally independent with respect to the five known
constant of motion for the geometry. The complete set of functionally independent constants
for the problem is at least six and since there are five degrees of freedom, the geodesic equations
turns out to be superintegrable.

It should be emphasized that our constant of motion is constructed in terms of the square
of a Killing-Yano tensor. The standard results found by Carter and studied deeply in [55]-[61]
insures that this constant of motion is in correspondence with an operator that commutes with
the laplacian. In other words, the hidden symmetry we have constructed is not anomalous.

We also pointed out that the worldline superparticle action [71]-[73] over the Y (p, q) geome-
tries admits an exotic supersymmetry. Aside from that, it may be an interesting general task
to realize whether or not the fake supersymmetries found in [84] may be interpreted as exotic
supersymmetries.

We ignore if the Killing-Yano tensor (4.49) and the Killing tensor (3.43) we constructed
were presented before. By looking the literature we have in hand we suggest that the present
work may overlap with [85]. In that reference the spectrum of certain BPS operators for a
gauge theory dual to IIB superstrings in a geometry of the form AdS5 x (Einstein-Sasaki) was
studied. This spectrum can be analized in terms of the eigenfunctions of the Laplacian defined
over the Einstein-Sasaki internal space. The authors of that reference are able to separate the
eigenvalue equations completely and they found an accidental quadratic constant of motion C
during the process. There are four constants of motion for these geometries, which are related
to usual isometries and the energy of the configuration. The constant C instead is not related



to an usual isometry. But since these geometries are obtained by reduction of certain black
hole geometries which admit Killing tensors, these authors suggest that C may be related to
the hidden symmetries of the higher dimensional geometry.

The reference described above is related to a family of Einstein-Sasaki geometries which
reduce to the Y (p, q) ones in certain limit of their moduli. We are not completely sure at the
moment if the constant C found in that reference will reduce to ours after taking this limit. If
this is not the case, then the Y (p, q) geometries admit two hidden symmetries instead of one.
This is a possibility that deserves further attention. But even if they coincide, the construction
of the tensors (4.49) and (3.46) we are doing is intrinsic, without taking into account reduc-
tions comming from higher dimensional black holes. Additionally, we are pointing out that any
Einstein-Sasaki geometry admits hidden symmetries (see appendix). For this reason, even if
we would rediscovered some results of that reference, we are using different arguments which
can be applied to more general situations [89].
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A Sasaki and Einstein-Sasaki metrics

1.1 Defining equations for Sasaki estructures

Let us consider the following conical metric in six dimensions

g6 = dr2 + r2g5. (1.57)

Here the metric g5 does not depend on the radial coordinate r and is defined over a variety
which we denote as M5. The metric g6 is defined over R>0 ×M5 and is singular at the tip of
the cone r = 0. The metric g5 is known as Sasaki if the cone g6 is Kahler. The converse also
holds. Let us recall that a metric g6 is Kahler if there exist a basis ea such that

g6 = δabe
a ⊗ eb,

and such that the almost complex structure

J = e1 ⊗ e2 − e2 ⊗ e1 + e3 ⊗ e4 − e4 ⊗ e3 + e5 ⊗ e6 − e6 ⊗ e5, (1.58)

is covariantly constant, i.e, ∇XJ = 0 for any vector field X in TM6. This condition implies
that the manifold is complex and sympletic with respect to the two form ω = g(·, J ·). The
sympletic form is explicitly

ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6.
If furthermore g6 is Ricci flat, then g6 is Einstein g5 and is usually denominated as Einstein-
Sasaki. A Ricci flat Kahler metric has an holonomy group included in SU(3) and is called
Calabi-Yau. Thus there is a one to one correspondence between the non compact Calabi-Yau
cones (1.57) and Einstein-Sasaki manifolds.



It is convenient for the following discussion to select a basis for g6 of the form

ei = rẽi, e6 = dr, (1.59)

with i = 1, .., 5 y ẽi a basis for g5. In this basis (1.59) the almost complex structure (1.58) takes
the form

J = ẽ1 ⊗ ẽ2 − ẽ2 ⊗ ẽ1 + ẽ3 ⊗ ẽ4 − ẽ4 ⊗ ẽ3 + rẽ5 ⊗ ∂r −
dr

r
⊗ ẽ5. (1.60)

Alternatively, it may be expressed as

J = φ+ rη ⊗ ∂r −
dr

r
⊗ ξ (1.61)

with η = e5 and ξ = e5, which means that η(ξ) = 1. The quantity φ is defined as

φ = ẽ1 ⊗ ẽ2 − ẽ2 ⊗ ẽ1 + ẽ3 ⊗ ẽ4 − ẽ4 ⊗ ẽ3. (1.62)

The expression (1.62) for φ involves four elements of the basis, but this does not mean that
φ is a quantity defined in a subvariety four dimensional M4 of M5. In fact the elements ẽa

with a = 1, 2, 3, 4 are 1-forms defined over M5. Nevertheless, as we will discuss now, if the
metric is Kahler then these elements are defined on a subvariety M4, and φ becomes an almost
complex structure for M4. This can be checked as follows. A vector field X̃ ∈ R>0 ×M5 may
be decomposed in a radial part a and an angular part X such that X̃ = (a,X). Starting from
(1.61) it may be deduced that the action of the almost complex structure over X̃ is given as

J(a,X) = (rη(X), φX − a

r
ξ). (1.63)

Furthermore, the Levi-Civita connection ∇̃ for the cone may be decomposed in the following
way

∇̃∂r∂r = 0, ∇̃X∂r = ∇̃∂rX =
X

r

∇̃XY = ∇XY − rg(X, Y )∂r. (1.64)

Here ∇ is the conection for g5. Formula (1.64) is completely elementary and arise directly
by comparing the Christofell symbols of g5 with the ones for g6. From (1.64) and (1.61) it is
obtained the following action in this basis

(∇̃∂rJ)∂r = (0, 0), (∇̃∂r)X = (0, 0),

(∇XJ)∂r = (0,
1

r
(−∇Xξ + φX)) (1.65)

(∇̃XJ)Y = (r∇Xη(Y )− rg5(X, φY ), (∇Xφ)Y − g5(X, Y )ξ + η(Y )X).

As we remarked above the cone g6 will be Kahler if∇XJ = 0, which means that all the covariant
derivatives (1.65) should be zero. This happens if and only if

∇Xξ = φX, (1.66)

∇Xη(Y ) = g5(X, φY ), (1.67)

(∇Xφ)Y = g5(X, Y )ξ − η(Y )X. (1.68)

The radial coordinate r does not appear in these expressions and thus these are constraints on
g5. The metrics g5 which satisfy (1.66), (1.68) and (1.68) are Sasakian by definition.



1.2 Derivation of the main formulas (3.43) and (4.49) of the text

The relations (1.66)-(1.68) as written above may not be very illuminating, but they may be
clarified by examining their consequences. The relation (1.67) implies that

∇Xη(Y ) +∇Y η(X) = g5(X, φY ) + g5(Y, φX), (1.69)

but it may be directly deduced from the definition (1.62) of φ that g5(X, φY ) = −g5(Y, φX).
Thus our last equation is

η(i;j) = 0, (1.70)

which implies that ξ = η∗ is a Killing vector and we have the local decomposition M5 =
Uξ(1)×M4 as anticipated. The metric takes the form

g5 = η2 + g4,

with
g4 = ẽ1 ⊗ ẽ1 + ẽ2 ⊗ ẽ2 + ẽ3 ⊗ ẽ3 + ẽ4 ⊗ ẽ4.

This is the local form (2.9) presented in the text. The vector field ξ = η∗ is the Reeb vector.
Additionally if we define I the restriction of φ toM4 then it follows from (1.67) and (1.70) that

g4(u, Iv) = dη(u, v),

for arbitrary vectors u and v in TM4. Denoting

f(u, v) = dη(u, v) (1.71)

it follows that d4f = 0, thus M4 is sympletic. In addition the antisymmetric part of (1.68) can
be written by taking into account (1.66) and uppering indices with the metric g5 as follows [88]

∇X(dη) = −2X∗ ∧ η. (1.72)

Note that for vectors u in TM4 the right hand side of (1.72) is zero, since vector fields in TM4

are orthogonal to η. This means that

∇4dη = ∇4f = 0,

where we took into account the definition (1.71). The last condition says that the metric g4
defined on M4 is Kahler. This one of the features discussed below formula (2.11) in the text.

Finally, let us explain how the Killing-Yano tensor (4.49) and the Killing tensor (3.43)
were obtained. For this purpose, consider the definition of Killing-Yano tensors (3.40). This
definition is completely equivalent to the following

∇Xf =
1

p+ 1
iXdf, (1.73)

with X an arbitrary vector field and iX the usual contraction operation. The equivalence can
be checked directly by writting (1.73) in components. The conformal generalization of (1.73)
was found in [86]-[87], and is given by

∇Xf =
1

p + 1
iXdf − 1

n− p+ 1
X∗ ∧ d∗f. (1.74)



Here X∗ is the dual 1-form to the vector field X and the operation d∗f = (−1)p ∗−1 d ∗ f has
been introduced, in which

∗−1 = ǫp∗, ǫp = (−1)p
det g

| det g| .

The p-forms satisfying the condition (1.74) are known as conformal Killing forms. When
d ∗ f = 0, (1.74) reduces to the usual definition of a Killing tensor (1.73).

Consider again (1.72). A direct consequence of this condition is d∗dη = 2(n − 1)η, with
n = 5. This means that (1.72) can be expressed alternatively as

∇X(dη) = − 1

n− 1
X∗ ∧ d∗dη. (1.75)

By taking into account that dη is closed and denoting f = dη, then comparison of (1.75) with
(1.74) shows that dη is a conformal Killing tensor. This, together with the fact that η is a
Killing 1-form implies that the combinations

ωk = η ∧ (dη)k, (1.76)

are all Killing tensors of order 2k+1. This calculation is straightforward and we learned it from
proposition 3.4 of [88]. Note that (1.76) is a generic statement for all the Sasakian structures.
For the Y (p, q) geometries, we have from (2.9) and (2.10) that

η = dψ
′

+ A = dψ
′ − cos θdφ+ y(dβ + cos θdφ), (1.77)

and the tensor (1.76) constructed with this form with k = 1 results

ω3 =
1

9
[(1− y) sin θ dθ ∧ dφ ∧ dψ′ − cos θ dθ ∧ dy ∧ dψ′ + dy ∧ dβ ∧ dψ′ (1.78)

+ sin θ y(1− y) dθ ∧ dφ ∧ dβ − dφ ∧ dy ∧ dβ],
which is the Killing-Yano tensor presented in formula (4.49) of the text, up to a notational
identification ω3 = f . The square Kµν = (ω3)µαβ(ω3)

αβ
ν is the Killing tensor (3.43) of section

3. These are the two fundamental formulas utilized along the text. Note that the Einstein
condition do not play any role in obtaining these results, and can be generalized to other
Einstein-Sasaki configurations such as the ones studied in [89].
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