15,455 research outputs found
Particle motion in Stokes flow near a plane fluid-fluid interface. Part 1. Slender body in a quiescent fluid
The present study examines the motion of a slender body in the presence of a plane fluid–fluid interface with an arbitrary viscosity ratio. The fluids are assumed to be at rest at infinity, and the particle is assumed to have an arbitrary orientation relative to the interface. The method of analysis is slender-body theory for Stokes flow using the fundamental solutions for singularities (i.e. Stokeslets and potential doublets) near a flat interface. We consider translation and rotation, each in three mutually orthogonal directions, thus determining the components of the hydrodynamic resistance tensors which relate the total hydrodynamic force and torque on the particle to its translational and angular velocities for a completely arbitrary translational and angular motion. To illustrate the application of these basic results, we calculate trajectories for a freely rotating particle under the action of an applied force either normal or parallel to a flat interface, which are relevant to particle sedimentation near a flat interface or to the processes of particle capture via drop or bubble flotation
Using molecular mechanics to predict bulk material properties of fibronectin fibers
The structural proteins of the extracellular matrix (ECM) form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn) and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional network models
RNAase III-Type Enzyme Dicer Regulates Mitochondrial Fatty Acid Oxidative Metabolism in Cardiac Mesenchymal Stem Cells
Cardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of β-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation
Quantum Speed Limit for Perfect State Transfer in One Dimension
The basic idea of spin chain engineering for perfect quantum state transfer
(QST) is to find a set of coupling constants in the Hamiltonian, such that a
particular state initially encoded on one site will evolve freely to the
opposite site without any dynamical controls. The minimal possible evolution
time represents a speed limit for QST. We prove that the optimal solution is
the one simulating the precession of a spin in a static magnetic field. We also
argue that, at least for solid-state systems where interactions are local, it
is more realistic to characterize the computation power by the couplings than
the initial energy.Comment: 5 pages, no figure; improved versio
Temporally and spatially resolved flow in a two-stage axial compressor. Part 2: Computational assessment
Fluid dynamics of turbomachines are complicated due to aerodynamic interactions between rotors and stators. It is necessary to understand the aerodynamics associated with these interactions in order to design turbomachines that are both light and compact as well as reliable and efficient. The current study uses an unsteady, thin-layer Navier-Stokes zonal approach to investigate the unsteady aerodynamics of a multi-stage compressor. Relative motion between rotors and stators is made possible by use of systems of patched and overlaid grids. Results have been computed for a 2 1/2-stage compressor configuration. The numerical data compares well with experimental data for surface pressures and wake data. In addition, the effect of grid refinement on the solution is studied
Efficacy of REACH Forgiveness across Cultures
Across cultures, most people agree that forgiveness is a virtue. However, culture may influence how willing one should be to forgive and how one might express forgiveness. At a university in the United States, we recruited both foreign-extraction students and domestic students (N = 102) to participate in a six-hour REACH Forgiveness intervention. We investigated the efficacy of the intervention overall as well as whether foreign-extraction and domestic students responded differently to treatment. Forgiveness was assessed using two measures—decisional forgiveness and emotional forgiveness. The six-hour REACH Forgiveness intervention improved participants’ ratings of emotional forgiveness, but not decisional forgiveness, regardless of their culture. Thus, the REACH Forgiveness intervention appears equally efficacious for participants from different cultural backgrounds when conducted in the United States with college students
- …
