8,994 research outputs found
The Diverse Properties of GPS Sources
We discuss the morphology and kinematics of five gigahertz-peaked spectrum
(GPS) sources that have been observed with the VLBA. We find a wide range of
observed properties including core-jet structure, superluminal motion,
variability, extended structure, and polarization, all of which appear to
deviate from commonly-accepted GPS paradigms (e.g., O'Dea 1998). We suggest
that the observed low frequency cutoff in GPS sources may be primarily due to
free-free absorption rather than synchrotron self-absorption.Comment: Proceedings of the 6th European VLBI Network Symposium, Ros E.,
Porcas R.W., Lobanov, A.P., & Zensus, J.A. (eds), MPIfR, Bonn, Germany. (4
pages, 5 figures, needs evn2002.cls style file
Quantum ergodicity for restrictions to hypersurfaces
Quantum ergodicity theorem states that for quantum systems with ergodic
classical flows, eigenstates are, in average, uniformly distributed on energy
surfaces. We show that if N is a hypersurface in the position space satisfying
a simple dynamical condition, the restrictions of eigenstates to N are also
quantum ergodic.Comment: 22 pages, 1 figure; revised according to referee's comments. To
appear in Nonlinearit
Experience with fluorine and its safe use as a propellant
The industrial and the propulsion experience with fluorine and its derivatives is surveyed. The hazardous qualities of fluorine and safe handling procedures for the substance are emphasized. Procedures which fulfill the safety requirements during ground operations for handling fluorinated propulsion systems are discussed. Procedures to be implemented for use onboard the Space Transportation System are included
The Temporal Expression of Adipokines During Spinal Fusion
Background Context
Adipokines are secreted by white adipose tissue and have been associated with fracture healing. Our goal was to report the temporal expression of adipokines during spinal fusion in an established rabbit model.
Purpose
Our goal was to report the temporal expression of adipokines during spinal fusion in an established rabbit model.
Study Design
The study design included a laboratory animal model.
Methods
New Zealand white rabbits were assigned to either sham surgery (n=2), unilateral posterior spinal fusion (n=14), or bilateral posterior spinal fusion (n=14). Rabbits were euthanized 1–6 and 10 weeks out from surgery. Fusion was evaluated by radiographs, manual palpation, and histology. Reverse transcription-polymerase chain reaction on the bone fusion mass catalogued the gene expression of leptin, adiponectin, resistin, and vascular endothelial growth factor (VEGF) at each time point. Results were normalized to the internal control gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (2^ΔCt), and control bone sites (2^ΔΔCt). Quantitative data were analyzed by two-factor analysis of variance (p\u3c.05).
Results
Manual palpation scores, radiograph scores, and histologic findings showed progression of boney fusion over time (p
Conclusions
Leptin expression is likely associated with the maturation phase of bone fusion. Adiponectin and resistin may play a role early on during the fusion process. Our results suggest that leptin expression may be upstream of VEGF expression during spinal fusion, and both appear to play an important role in bone spinal fusion
Magnetic Effects Change Our View of the Heliosheath
There is currently a controversy as to whether Voyager 1 has already crossed
the Termination Shock, the first boundary of the Heliosphere. The region
between the Termination Shock and the Heliopause, the Helisheath, is one of the
most unknown regions theoretically. In the Heliosheath magnetic effects are
crucial, as the solar magnetic field is compressed at the Termination Shock by
the slowing flow. Recently, our simulations showed that the Heliosheath
presents remarkable dynamics, with turbulent flows and the presence of a jet
flow at the current sheet that is unstable due to magnetohydrodynamic
instabilities \cite{opher,opher1}. In this paper we review these recent
results, and present an additional simulation with constant neutral atom
background. In this case the jet is still present but with reduced intensity.
Further study, e.g., including neutrals and the tilt of the solar rotation from
the magnetic axis, is required before we can definitively address how the
Heliosheath behaves. Already we can say that this region presents remarkable
dynamics, with turbulent flows, indicating that the Heliosheath might be very
different from what we previously thought.Comment: 6 pages, 5 figures, to appear in IGPP 3rd Annual International
Astrophysics Conference, "PHYSICS OF THE OUTER HELIOSPHERE
Polyetheretherketone as a Biomaterial for Spinal Applications
Threaded lumbar interbody spinal fusion devices (TIBFD) made from titanium have been reported to be 90% effective for single-level lumbar interbody fusion, although radiographic determination of fusion has been intensely debated in the literature. Using blinded radiographic, biomechanic, histologic, and statistical measures, we evaluated a radiolucent polyetheretherketone (PEEK)-threaded interbody fusion device packed with autograft or rhBMP-2 on an absorbable collagen sponge in 13 sheep at 6 months. Radiographic fusion, increased spinal level biomechanical stiffness, and histologic fusion were demonstrated for the PEEK cages filled with autograft or rhBMP-2 on a collagen sponge. No device degradation or wear debris was observed. Only mild chronic inflammation consisting of a few macrophages was observed in peri-implant tissues. Based on these results, the polymeric biomaterial PEEK may be a useful biomaterial for interbody fusion cages due to the polymer\u27s increased radiolucency and decreased stiffness
1995 atmospheric trace molecule spectroscopy (ATMOS) linelist
The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment uses a Fourier-transform spectrometer on board the Space Shuttle to record infrared solar occultation spectra of the atmosphere at 0.01-cm^(-1) resolution. The current version of the molecular spectroscopic database used for the analysis of the data obtained during three Space Shuttle missions between 1992 and 1994 is described. It is an extension of the effort first described by Brown et al. [Appl. Opt. 26, 5154 (1987)] to maintain an up-to-date database for the ATMOS experiment. The three-part ATMOS compilation contains Line parameters of 49 molecular species between 0 and 10000 cm^(-1), The main list, with nearly 700,000 entries, is an updated version of the HITRAN 1992 database. The second compilation contains supplemental line parameters, and the third set consists of absorption cross sections to represent the unresolvable features of heavy molecules. The differences between the ATMOS database and other public compilations are discussed
Crystallization in suspensions of hard spheres: A Monte Carlo and Molecular Dynamics simulation study
The crystallization of a metastable melt is one of the most important non
equilibrium phenomena in condensed matter physics, and hard sphere colloidal
model systems have been used for several decades to investigate this process by
experimental observation and computer simulation. Nevertheless, there is still
an unexplained discrepancy between simulation data and experimental nucleation
rate densities. In this paper we examine the nucleation process in hard spheres
using molecular dynamics and Monte Carlo simulation. We show that the
crystallization process is mediated by precursors of low orientational
bond-order and that our simulation data fairly match the experimental data
sets
Synthetic Next Generation Very Large Array line observations of a massive star-forming cloud
Context. Studies of the interstellar medium and the pre-stellar cloud evolution require spectral line observations that have a high sensitivity and high angular and velocity resolution. Regions of high-mass star formation are particularly challenging because of line-of-sight confusion, inhomogeneous physical conditions, and potentially very high optical depths.Aims. We wish to quantify to what accuracy the physical conditions within a massive star-forming cloud can be determined from observations. We are particularly interested in the possibilities offered by the Next Generation Very Large Array (ngVLA) interferometer.Methods. We used data from a magnetohydrodynamic simulation of star formation in a high-density environment. We concentrated on the study of a filamentary structure that has physical properties similar to a small infrared-dark cloud. We produced synthetic observations for spectral lines observable with the ngVLA and analysed these to measure column density, gas temperature, and kinematics. Results were compared to ideal line observations and the actual 3D model.Results. For a nominal cloud distance of 4kpc, ngVLA provides a resolution of similar to 0.01 pc even in its most compact configuration. For abundant molecules, such as HCO+, NH3, N2H+, and CO isotopomers, cloud kinematics and structure can be mapped down to subarcsecond scales in just a few hours. For NH3, a reliable column density map could be obtained for the entire 15 '' x 40 '' cloud, even without the help of additional single-dish data, and kinetic temperatures are recovered to a precision of similar to 1 K. At higher frequencies, the loss of large-scale emission becomes noticeable. The line observations are seen to accurately trace the cloud kinematics, except for the largest scales, where some artefacts appear due to the filtering of low spatial frequencies. The line-of-sight confusion complicates the interpretation of the kinematics, and the usefulness of collapse indicators based on the expected blue asymmetry of optically thick lines is limited.Conclusions. The ngVLA will be able to provide accurate data on the small-scale structure and the physical and chemical state of star-forming clouds, even in high-mass star-forming regions at kiloparsec distances. Complementary single-dish data are still essential for estimates of the total column density and the large-scale kinematics.Peer reviewe
Silicon oxide nanowire growth mechanisms revealed by real-time electron microscopy
© 2016 The Royal Society of Chemistry. Growth of one-dimensional materials is possible through numerous mechanisms that affect the nanowire structure and morphology. Here, we explain why a wide range of morphologies is observed when silicon oxide nanowires are grown on silicon substrates using liquid gallium catalyst droplets. We show that a gallium oxide overlayer is needed for nanowire nucleation at typical growth temperatures, and that it can decompose during growth and, hence, dramatically alter the nanowire morphology. Gallium oxide decomposition is attributed to etching caused by hydrogen that can be supplied by thermal dissociation of H2O (a common impurity). We show that H2O dissociation is catalyzed by silicon substrates at temperatures as low as 320 °C, identify the material supply pathways and processes that rate-limit nanowire growth under dry and wet atmospheres, and present a detailed growth model that explains contradictory results reported in prior studies. We also show that under wet atmospheres the Ga droplets can be mobile and promote nanowire growth as they traverse the silicon substrate
- …