4,307 research outputs found

    Two strikes: limited NIH R55 and R56 retooling funds and abolishment of the A2 grant mechanism

    Full text link
    The U.S. National Institutes of Health (NIH) are facing significant budgetary challenges as a result of the current economic climate. The recent sunset of investigator‐initiated R01‐type research grants after one revised submission, coupled with the present lack of an NIH retooling funding mechanism for such grant applicants, creates a concerning risk that talented and well‐trained investigators may be forced to give up their research careers. Existing NIH retooling mechanisms include the R55 Shannon Award, which was established in 1991 and was essentially replaced in 2005 by the R56 award. There is an urgent need to either significantly expand the R55/R56 mechanisms and definition of NIH grant bridging/retooling support for unfunded meritorious proposals or introduce a new mechanism that provides specific support to investigators with competitive but unfunded R01 revised grants. An expanded retooling funding mechanism deserves implementation during continuing assessment of whether allowance of only one revision of research proposals has achieved its initial intended goals. Omary, M. B., Offhaus, H., Kunkel, S. L. Two strikes: limited NIH R55 and R56 retooling funds and abolishment of the A2 grant mechanism. FASEB J. 25, 4108–4110 (2011). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154267/1/fsb2fj11188052.pd

    Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects.

    Get PDF
    The increasing prevalence of functional and motility gastrointestinal (GI) disorders is at odds with bottlenecks in their diagnosis, treatment, and follow-up. Lack of noninvasive approaches means that only specialized centers can perform objective assessment procedures. Abnormal GI muscular activity, which is coordinated by electrical slow-waves, may play a key role in symptoms. As such, the electrogastrogram (EGG), a noninvasive means to continuously monitor gastric electrical activity, can be used to inform diagnoses over broader populations. However, it is seldom used due to technical issues: inconsistent results from single-channel measurements and signal artifacts that make interpretation difficult and limit prolonged monitoring. Here, we overcome these limitations with a wearable multi-channel system and artifact removal signal processing methods. Our approach yields an increase of 0.56 in the mean correlation coefficient between EGG and the clinical "gold standard", gastric manometry, across 11 subjects (p < 0.001). We also demonstrate this system's usage for ambulatory monitoring, which reveals myoelectric dynamics in response to meals akin to gastric emptying patterns and circadian-related oscillations. Our approach is noninvasive, easy to administer, and has promise to widen the scope of populations with GI disorders for which clinicians can screen patients, diagnose disorders, and refine treatments objectively

    The Role of Interleukin-8 in the Infectious Process a

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73887/1/j.1749-6632.1994.tb44245.x.pd

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    Notch system in the linkage of innate and adaptive immunity

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142014/1/jlb0059.pd

    C‐C chemokine‐induced eosinophil chemotaxis during allergic airway inflammation

    Full text link
    The production of eosinophil‐specific chemotactic factors during allergic airway responses may be a pivotal event resulting in eosinophil accumulation, activation, and airway damage. Recent studies have identified specific chemokines that may play crucial roles in recruitment of eosinophils to the site of allergic reactions. In this study we have utilized an established model of schistosome egg antigen (SEA)‐mediated allergic responses to examine the role of specific C‐C chemokines [macrophage inflammatory protein‐1α (MIP‐1α), RANTES, and monocyte chemoattractant protein‐1 (MCP‐1)] in eosinophil recruitment. We have previously identified a role for MIP‐1α in eosinophil accumulation in the lung and airway during allergic airway inflammation. We extend those studies using in vitro eosinophil chemotaxis to establish that both MIP‐1α and RANTES are potent eosinophil chemotactic factors in lungs during allergic airway responses. Morphometric analysis demonstrated a peribronchial accumulation of eosinophils within the lungs beginning at 8 h, peaking at 24 h, and plateauing at 48–96 h after allergen (SEA) challenge. Utilizing whole‐lung homogenates from allergen‐challenged mice, in vitro eosinophil chemotactic assays demonstrated significant increases in eosinophil chemotactic activity with 8‐h lung homogenates and peak activity with samples from 24‐h lung homogenates. These data correlated with the morphometric analysis of peribronchial eosinophil accumulation in situ. When lung homogenates from allergen‐challenged mice were preincubated in vitro with antibodies specific for MIP‐1α, RANTES, or MCP‐1, a significant reduction in eosinophil chemotaxis was observed with only MIP‐1α and RANTES neutralization. Altogether, these studies indicate that RANTES and MIP‐1α are major eosinophil chemotactic factors produced during allergic airway responses. J. Leukoc. Biol. 60:573–578; 1996.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141543/1/jlb0573.pd

    Regulation of Macrophage‐Derived Fibroblast Growth Factor Release by Arachidonate Metabolites

    Full text link
    The macrophage is a source of many mediators with direct and indirect fibrogenic potential. In this study, release of macrophage‐derived fibroblast growth factor (MDGF) activity by murine peritoneal macrophages is examined with regard to its regulation by arachidonate metabolites. Upon stimulation with 10 ÎŒg/ml lipopolysaccharide (LPS), resident peritoneal macrophages from CBA/J mice released MDGF activity into media rapidly, reaching maximal levels in approximately 1 h. Lysates of these stimulated cells also revealed significantly increased cell‐associated MDGF activity, composing 45% of the total assayable activity. This activity, as assayed by radioactive thymidine incorporation by primary cultures of rat lung fibroblasts, was separable from interleukin‐1 (IL‐1) activity by reverse phase high performance liquid chromatography (HPLC). Furthermore, purified murine IL‐1 had no MDGF activity in this assay system. This stimulated MDGF release was enhanced by the cylooxygenase inhibitors indomethacin, Ibuprofen, and aspirin at micromolar concentrations, but inhibited in a dose‐dependent manner by prostaglandin E2 (PGE2). On the other hand, nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor was inhibitory at 0.1 and 0.4 ÎŒM but not at 2.5 ÎŒM. Zymosan‐stimulated macrophages also markedly increased MDGF release, albeit with a different time course which was characterized by a delay of approximately 7 h before peak levels were attained. Such stimulation, which is known to cause increased lipoxygenase activity, was also inhibited by 0.5 ÎŒM NDGA. In contrast, the lipoxygenase pathway products leukotrienes B4 (LTB4) and C4 (LTC4) stimulated MDGF release in a dose‐dependent (10‐10‐10‐8 M) manner, with LTC4 being more potent on a per unit dose basis. Stimulation by LTC4 was inhibited by the putative leukotriene receptor antagonist, FPL55712, while LTD4 and LTE4 did not stimulate MDGF release, thus suggesting the mediation of this effect by specific LTC4 receptors. These data suggest also that products of the cyclooxygenase and lipoxygenase pathways are potentially important both as exogenous (ie, derived from cells other than the macrophage itself) and auto‐ or self‐regulators of macrophage MDGF release. This, in turn, implies that cyclooxygenase products are antifibrogenic and important in maintaining or returning to the quiescent or normal state, whereas the lipoxygenase products are profibrogenic and important in induction of fibrosis or wound‐healing and tissue repair. Any alteration in the balance between these two pathways may result in either a desirable or a harmful outcome.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141690/1/jlb0106.pd

    Role of CC chemokine CCL6/C10 as a monocyte chemoattractant in a murine acute peritonitis.

    Get PDF
    The aim of this study was to determine the role of CC chemokine CCL6/C10 in acute inflammation. Intraperitoneal injection of thioglycollate increased peritoneal CCL6, which peaked at 4 h and remained elevated at 48 h. Neutralization of CCL6 significantly inhibited the macrophage infiltration (34-48% reduction), but not other cell types, without decreasing the other CC chemokines known to attract monocytes/macrophages. CCL6 was expressed in peripheral eosinophils and elicited macrophages, but not in elicited neutrophils. Peritoneal CCL6 level was not decreased in granulocyte-depleted mice where eosinophil influx was significantly impaired. Thus, CCL6 appears to contribute to the macrophage infiltration that is independent of other CC chemokines. Eosinophils pre-store CCL6, but do not release CCL6 in the peritoneum in this model of inflammation

    Interferon-Îł Stimulates Monocyte Chemotactic Protein-1 Expression by Monocytes

    Get PDF
    Monocyte chemotactic protein (MCP-1) is a specific monocyte chemoattractant and activating factor produced by both immune cells (mononuclear phagocytes and lymphocytes) and non-immune cells (parenchymal and stromal cells). In order to define the conditions under which human monocytes express MCP-1, monocytes were exposed to IFN-Îł, IL- lÎČ, TNF-α, IL-4 or PHA under serum free conditions. There was no significant MCP-1 production by monocytes following exposure to IL-lÎČ, TNF-α or IL-4. In contrast, stimulation with IFN-Îł resulted in a dose dependent increase in MCP-1 protein and mRNA expression. Simultaneous stimulation with IFN-Îł and IL-1ÎČ or TNF-α resulted in no further increase in MCP-1 production. It is concluded that IFN-Îł, primarily a product of TH1 T lymphocytes, stimulates the expression of MCP-1 by monocytes
    • 

    corecore