2,339 research outputs found

    Mindsets of Health and Healthy Eating Intentions

    Get PDF
    Across two studies, we examined the relation between mindsets of health, expectancy-value and eating intentions. We also explored if relations are stronger for African Americans compared to White Americans. In Study 1, we conducted a correlational study (N= 158) to examine initial relations among constructs. In Study 2, we employed an experimental design (N = 205), and randomly assigned participants to either a growth mindset or a fixed mindset of health condition. In both studies, we measured participants’ mindsets of health, expectancy-value beliefs, healthy eating intentions, past eating habits and demographics. In Study 1, stronger growth mindsets of health predicted healthier eating intentions. Expectancy-value beliefs, namely, the extent to which individuals value healthy eating habits and expect to be able to manage their eating, mediated this relation. In Study 2, we successfully manipulated mindsets of health and individuals in the growth mindset condition reported healthier eating intentions, compared to those in the fixed mindset condition. Expectancy-value beliefs again mediated this link. Race only moderated the relation in Study 1, such that effects of growth mindsets on outcomes (i.e., eating intentions and expectancy-value beliefs) are stronger for African Americans compared to White Americans. Study 1 provided initial evidence of a relationship between stronger growth mindsets of health and healthier beliefs and intentions. Study 2 offered experimental evidence. We discuss theoretical and practical implications

    Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks

    Full text link
    We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method -- a single clock laser combined with a DC magnetic field-- relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10^-17 for the metrologically preferred even isotopes

    An Online Growth Mindset Intervention in a Sample of Rural Adolescent Girls

    Get PDF
    Background. Students living in rural areas of the United States exhibit lower levels of educational attainment than their suburban counterparts. Innovative interventions are needed to close this educational gap. Aims. We investigated whether an online growth mindset intervention could be leveraged to promote academic outcomes. Sample. We tested the mindset intervention in a sample of 222 10th-grade adolescent girls (M age=15.2; 38% White, 25% Black, 29% Hispanic) from four rural, low-income high schools in Southeastern United States. Methods. We conducted a randomized controlled trial to test the efficacy of the growth mindset intervention, relative to a sexual health programme. We used random sampling and allocation procedures to assign girls to either the mindset intervention (n-115) or an attention-matched control programme (n-107). We assessed participants at pre-test, immediate post-test, and 4-month follow up. Results. Relative to the control condition, students assigned to the mindset intervention reported stronger growth mindsets at immediate post-test and 4-month follow up. Although the intervention did not have a total effect on academic attitudes or grades, it indirectly increased motivation to learn, learning efficacy and grades via the shifts in growth mindsets. Conclusions. Results indicate that this intervention is a promising method to encourage growth mindsets in rural adolescent girls

    Capillary force-induced structural instability in liquid infiltrated elastic circular tubes

    Full text link
    The capillary-induced structural instability of an elastic circular tube partially filled by a liquid is studied by combining theoretical analysis and molecular dynamics simulations. The analysis shows that, associated with the instability, there is a well-defined length scale (elasto-capillary length), which exhibits a scaling relationship with the characteristic length of the tube, regardless of the interaction details. We validate this scaling relationship for a carbon nanotube partially filled by liquid iron. The capillary-induced structural transformation could have potential applications for nano-devices

    Detection of pediatric upper extremity motor activity and deficits with accelerometry

    Get PDF
    Importance: Affordable, quantitative methods to screen children for developmental delays are needed. Motor milestones can be an indicator of developmental delay and may be used to track developmental progress. Accelerometry offers a way to gather real-world information about pediatric motor behavior. Objective: To develop a referent cohort of pediatric accelerometry from bilateral upper extremities (UEs) and determine whether movement can accurately distinguish those with and without motor deficits. Design, Setting, and Participants: Children aged 0 to 17 years participated in a prospective cohort from December 8, 2014, to December 29, 2017. Children were recruited from Ranken Jordan Pediatric Bridge Hospital, Maryland Heights, Missouri, and Washington University School of Medicine in St Louis, St Louis, Missouri. Typically developing children were included as a referent cohort if they had no history of motor or neurological deficit; consecutive sampling and matching ensured equal representation of sex and age. Children with diagnosed asymmetric motor deficits were included in the motor impaired cohort. Exposures: Bilateral UE motor activity was measured using wrist-worn accelerometers for a total of 100 hours in 25-hour increments. Main Outcomes and Measures: To characterize bilateral UE motor activity in a referent cohort for the purpose of detecting irregularities in the future, total activity and the use ratio between UEs were used to describe typically developing children. Asymmetric impairment was classified using the mono-arm use index (MAUI) and bilateral-arm use index (BAUI) to quantify the acceleration of unilateral movements. Results: A total of 216 children enrolled, and 185 children were included in analysis. Of these, 156 were typically developing, with mean (SD) age 9.1 (5.1) years and 81 boys (52.0%). There were 29 children in the motor impaired cohort, with mean (SD) age 7.4 (4.4) years and 16 boys (55.2%). The combined MAUI and BAUI (mean [SD], 0.86 [0.005] and use ratio (mean [SD], 0.90 [0.008]) had similar F1 values. The area under the curve was also similar between the combined MAUI and BAUI (mean [SD], 0.98 [0.004]) and the use ratio (mean [SD], 0.98 [0.004]). Conclusions and Relevance: Bilateral UE movement as measured with accelerometry may provide a meaningful metric of real-world motor behavior across childhood. Screening in early childhood remains a challenge; MAUI may provide an effective method for clinicians to measure and visualize real-world motor behavior in children at risk for asymmetrical deficits

    Observation and absolute frequency measurements of the 1S0 - 3P0 optical clock transition in ytterbium

    Full text link
    We report the direct excitation of the highly forbidden (6s^2) 1S0 - (6s6p) 3P0 optical transition in two odd isotopes of ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at ~70 uK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,593.2 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,850.0 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock and represent nearly a million-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be ~10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.Comment: 4 pages, 3 figure

    From the Top: Surface-derived Carbon Fuels Greenhouse Gas Production at Depth in a Neotropical Peatland

    Get PDF
    Tropical peatlands play an important role in global carbon (C) cycling but little is known about factors driving carbon dioxide (CO2) and methane (CH4) emissions from these ecosystems, especially production below the surface. This study aimed to identify source material and processes regulating C emissions from deep in a Neotropical peatland on the Caribbean coast of Panama. We hypothesized that: 1) surface derived organic matter transported down the soil profile is the primary C source for respiration products at depth and 2) high lignin content results in hydrogenotrophic methanogenesis as the dominant CH4 production pathway throughout the profile. We used radiocarbon isotopes to determine whether CO2 and CH4 at depth (measured to 2 m) are produced from modern substrates or ancient deep peat, and we used stable C isotopes to identify the dominant CH4 production pathway. Peat organic chemistry was characterized using 13C solid state nuclear magnetic resonance spectroscopy (13C-NMR). We found that deep peat respiration products had radiocarbon signatures that were more similar to surface dissolved organic C (DOC) than deep solid peat. Radiocarbon ages for deep peat ranged from 1200 – 1800 yrBP at the sites measured. These results indicate that surface derived C was the dominant source for gas production at depth in this peatland, likely because of vertical transport of DOC from the surface to depth. Carbohydrates did not vary with depth across these sites, whereas lignin, which was the most abundant compound (55–70 % of C), tended to increase with depth. These results suggest that there is no preferential decomposition of carbohydrates, but preferential retention of lignin. Stable isotope signatures of respiration products indicated that hydrogenotrophic rather than acetoclastic methanogenesis was the dominant production pathway of CH4 throughout the peat profile. These results suggest, even C compounds that are typically considered vulnerable to decomposition (i.e., carbohydrates) are preserved deep in these tropical peats, highlighting the importance of anaerobic, waterlogged conditions for preserving tropical peatland C

    Measuring kinetic coefficients by molecular dynamics simulation of zone melting

    Full text link
    Molecular dynamics simulations are performed to measure the kinetic coefficient at the solid-liquid interface in pure gold. Results are obtained for the (111), (100) and (110) orientations. Both Au(100) and Au(110) are in reasonable agreement with the law proposed for collision-limited growth. For Au(111), stacking fault domains form, as first reported by Burke, Broughton and Gilmer [J. Chem. Phys. {\bf 89}, 1030 (1988)]. The consequence on the kinetics of this interface is dramatic: the measured kinetic coefficient is three times smaller than that predicted by collision-limited growth. Finally, crystallization and melting are found to be always asymmetrical but here again the effect is much more pronounced for the (111) orientation.Comment: 8 pages, 9 figures (for fig. 8 : [email protected]). Accepted for publication in Phys. Rev.
    • …
    corecore