28 research outputs found

    The impact of pipeline changes and temperature increase in a hospital historically colonised with Legionella

    Get PDF
    Healthcare-related Legionnaires' disease has a devastating impact on high risk patients, with a case fatality rate of 30-50%. Legionella prevention and control in hospitals is therefore crucial. To control Legionella water colonisation in a hospital setting we evaluated the effect of pipeline improvements and temperature increase, analysing 237 samples over a 2-year period (first year: 129, second year: 108). In the first year, 25.58% of samples were positive for Legionella and 16.67% for amoeba. Assessing the distance of the points analysed from the hot water tank, the most distal points presented higher proportion of Legionella colonisation and lower temperatures (nearest points: 6.4% colonised, and temperature 61.4 °C; most distal points: 50% and temperature 59.1 °C). After the first year, the hot water system was repaired and the temperature stabilised. This led to a dramatic reduction in Legionella colonisation, which was negative in all the samples analysed; however, amoeba colonisation remained stable. This study shows the importance of keeping the temperature stable throughout the circuit, at around 60 °C. Special attention should be paid to the most distal points of the circuit; a fall in temperature at these weak points would favour the colonisation and spread of Legionella, because amoeba (the main Legionella reservoir) are not affected by temperature

    Motoneuron deafferentation and gliosis occur in association with neuromuscular regressive changes during ageing in mice

    Get PDF
    Background The cellular mechanisms underlying the age‐associated loss of muscle mass and function (sarcopenia) are poorly understood, hampering the development of effective treatment strategies. Here, we performed a detailed characterization of age‐related pathophysiological changes in the mouse neuromuscular system. Methods Young, adult, middle‐aged, and old (1, 4, 14, and 24-30 months old, respectively) C57BL/6J mice were used. Motor behavioural and electrophysiological tests and histological and immunocytochemical procedures were carried out to simultaneously analyse structural, molecular, and functional age‐related changes in distinct cellular components of the neuromuscular system. Results Ageing was not accompanied by a significant loss of spinal motoneurons (MNs), although a proportion (~15%) of them in old mice exhibited an abnormally dark appearance. Dark MNs were also observed in adult (~9%) and young (~4%) animals, suggesting that during ageing, some MNs undergo early deleterious changes, which may not lead to MN death. Old MNs were depleted of cholinergic and glutamatergic inputs (~40% and ~45%, respectively, P < 0.01), suggestive of age‐associated alterations in MN excitability. Prominent microgliosis and astrogliosis [~93% (P < 0.001) and ~100% (P < 0.0001) increase vs. adults, respectively] were found in old spinal cords, with increased density of pro‐inflammatory M1 microglia and A1 astroglia (25‐fold and 4‐fold increase, respectively, P < 0.0001). Ageing resulted in significant reductions in the nerve conduction velocity and the compound muscle action potential amplitude (~30%, P < 0.05, vs. adults) in old distal plantar muscles. Compared with adult muscles, old muscles exhibited significantly higher numbers of both denervated and polyinnervated neuromuscular junctions, changes in fibre type composition, higher proportion of fibres showing central nuclei and lipofuscin aggregates, depletion of satellite cells, and augmented expression of different molecules related to development, plasticity, and maintenance of neuromuscular junctions, including calcitonin gene‐related peptide, growth associated protein 43, agrin, fibroblast growth factor binding protein 1, and transforming growth factor‐β1. Overall, these alterations occurred at varying degrees in all the muscles analysed, with no correlation between the age‐related changes observed and myofiber type composition or muscle topography. Conclusions Our data provide a global view of age‐associated neuromuscular changes in a mouse model of ageing and help to advance understanding of contributing pathways leading to development of sarcopenia.This work was supported by Abbott and a grant from the Ministerio de Ciencia, Innovación y Universidades cofinancedby Fondo Europeo de Desarrollo Regional (RTI2018-099278-B-I00 to J.C. and J.E.

    Incidence, risk factors, clinical characteristics and outcomes of deep venous thrombosis in patients with COVID-19 attending the Emergency Department: results of the UMC-19-S8

    Get PDF
    Background and importance: A higher incidence of venous thromboembolism [both pulmonary embolism and deep vein thrombosis (DVT)] in patients with coronavirus disease 2019 (COVID-19) has been described. But little is known about the true frequency of DVT in patients who attend emergency department (ED) and are diagnosed with COVID-19. Objective: We investigated the incidence, risk factors, clinical characteristics and outcomes of DVT in patients with COVID-19 attending the ED before hospitalization. Methods: We retrospectively reviewed all COVID patients diagnosed with DVT in 62 Spanish EDs (20% of Spanish EDs, case group) during the first 2 months of the COVID-19 outbreak. We compared DVT-COVID-19 patients with COVID-19 without DVT patients (control group). Relative frequencies of DVT were estimated in COVID and non-COVID patients visiting the ED and annual standardized incidences were estimated for both populations. Sixty-three patient characteristics and four outcomes were compared between cases and controls. Results: We identified 112 DVT in 74 814 patients with COVID-19 attending the ED [1.50‰; 95% confidence interval (CI), 1.23-1.80‰]. This relative frequency was similar than that observed in non-COVID patients [2109/1 388 879; 1.52‰; 95% CI, 1.45-1.69‰; odds ratio (OR) = 0.98 [0.82-1.19]. Standardized incidence of DVT was higher in COVID patients (98,38 versus 42,93/100,000/year; OR, 2.20; 95% CI, 2.03-2.38). In COVID patients, the clinical characteristics associated with a higher risk of presenting DVT were older age and having a history of venous thromboembolism, recent surgery/immobilization and hypertension; chest pain and desaturation at ED arrival and some analytical disturbances were also more frequently seen, d-dimer >5000 ng/mL being the strongest. After adjustment for age and sex, hospitalization, ICU admission and prolonged hospitalization were more frequent in cases than controls, whereas mortality was similar (OR, 1.37; 95% CI, 0.77-2.45). Conclusions: DVT was an unusual form of COVID presentation in COVID patients but was associated with a worse prognosis

    Resveratrol improves motoneuron function and extends survival in SOD1G93A ALS mice

    No full text
    Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease that causes progressive paralysis and death due to degeneration of motoneurons in spinal cord, brainstem and motor cortex. Nowadays, there is no effective therapy and patients die 2-5 years after diagnosis. Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural polyphenol found in grapes, with promising neuroprotective effects since it induces expression and activation of several neuroprotective pathways involving Sirtuin1 and AMPK. The objective of this work was to assess the effect of resveratrol administration on SOD1(G93A) ALS mice. We determined the onset of symptoms by rotarod test and evaluated upper and lower motoneuron function using electrophysiological tests. We assessed the survival of the animals and determined the number of spinal motoneurons. Finally, we further investigated resveratrol mechanism of action by means of western blot and immunohistochemical analysis. Resveratrol treatment from 8 weeks of age significantly delayed disease onset and preserved lower and upper motoneuron function in female and male animals. Moreover, resveratrol significantly extended SOD1(G93A) mice lifespan and promoted survival of spinal motoneurons. Delayed resveratrol administration from 12 weeks of age also improved spinal motoneuron function preservation and survival. Further experiments revealed that resveratrol protective effects were associated with increased expression and activation of Sirtuin 1 and AMPK in the ventral spinal cord. Both mediators promoted normalization of the autophagic flux and, more importantly, increased mitochondrial biogenesis in the SOD1(G93A) spinal cord. Taken together, our findings suggest that resveratrol may represent a promising therapy for AL

    Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system

    Get PDF
    Besides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles. Additionally, both supplements significantly augmented the number of innervated NMJs and their degree of maturity compared to controls. GTE, but not cocoa, prominently increased the density of VAChT and VGluT2 afferent synapses on MNs, which were lost in control aged spinal cords; conversely, cocoa, but not GTE, significantly augmented the proportion of VGluT1 afferent synapses on aged MNs. Moreover, GTE, but not cocoa, reduced aging-associated microgliosis and increased the proportion of neuroprotective microglial phenotypes. Our data indicate that certain plant flavonoids may be beneficial in the nutritional management of age-related deterioration of the neuromuscular system
    corecore