25 research outputs found

    Multivesicular exocytosis in rat pancreatic beta cells

    Get PDF
    AIMS/HYPOTHESIS: To establish the occurrence, modulation and functional significance of compound exocytosis in insulin-secreting beta cells. METHODS: Exocytosis was monitored in rat beta cells by electrophysiological, biochemical and optical methods. The functional assays were complemented by three-dimensional reconstruction of confocal imaging, transmission and block face scanning electron microscopy to obtain ultrastructural evidence of compound exocytosis. RESULTS: Compound exocytosis contributed marginally (<5% of events) to exocytosis elicited by glucose/membrane depolarisation alone. However, in beta cells stimulated by a combination of glucose and the muscarinic agonist carbachol, 15-20% of the release events were due to multivesicular exocytosis, but the frequency of exocytosis was not affected. The optical measurements suggest that carbachol should stimulate insulin secretion by ∼40%, similar to the observed enhancement of glucose-induced insulin secretion. The effects of carbachol were mimicked by elevating [Ca(2+)](i) from 0.2 to 2 μmol/l Ca(2+). Two-photon sulforhodamine imaging revealed exocytotic events about fivefold larger than single vesicles and that these structures, once formed, could persist for tens of seconds. Cells exposed to carbachol for 30 s contained long (1-2 μm) serpentine-like membrane structures adjacent to the plasma membrane. Three-dimensional electron microscopy confirmed the existence of fused multigranular aggregates within the beta cell, the frequency of which increased about fourfold in response to stimulation with carbachol. CONCLUSIONS/INTERPRETATION: Although contributing marginally to glucose-induced insulin secretion, compound exocytosis becomes quantitatively significant under conditions associated with global elevation of cytoplasmic calcium. These findings suggest that compound exocytosis is a major contributor to the augmentation of glucose-induced insulin secretion by muscarinic receptor activation

    Papillon-Lefevre syndrome patient reveals species-dependent requirements for neutrophil defenses

    No full text
    Papillon-Lefèvre syndrome (PLS) results from mutations that inactivate cysteine protease cathepsin C (CTSC), which processes a variety of serine proteases considered essential for antimicrobial defense. Despite serine protease–deficient immune cell populations, PLS patients do not exhibit marked immunodeficiency. Here, we characterized a 24-year-old woman who had suffered from severe juvenile periodontal disease, but was otherwise healthy, and identified a homozygous missense mutation in CTSC indicative of PLS. Proteome analysis of patient neutrophil granules revealed that several proteins that normally localize to azurophil granules, including the major serine proteases, elastase, cathepsin G, and proteinase 3, were absent. Accordingly, neutrophils from this patient were incapable of producing neutrophil extracellular traps (NETs) in response to ROS and were unable to process endogenous cathelicidin hCAP-18 into the antibacterial peptide LL-37 in response to ionomycin. In immature myeloid cells from patient bone marrow, biosynthesis of CTSC and neutrophil serine proteases appeared normal along with initial processing and sorting to cellular storage. In contrast, these proteins were completely absent in mature neutrophils, indicating that CTSC mutation promotes protease degradation in more mature hematopoietic subsets, but does not affect protease production in progenitor cells. Together, these data indicate CTSC protects serine proteases from degradation in mature immune cells and suggest that neutrophil serine proteases are dispensable for human immunoprotection

    Silent synapses in the developing hippocampus: Lack of functional AMPA receptors or low probability of glutamate release?

    No full text
    At early developmental stages, silent synapses have been commonly found in different brain areas. These synapses are called silent because they do not respond at rest but are functional at positive membrane potentials. A widely accepted interpretation is that N-methyl-d-aspartate (NMDA) but not α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are functionally expressed on the subsynaptic membrane. Here we show that, in both CA3 and CA1 hippocampal regions, AMPA-mediated synaptic responses can be detected already at early stages of postnatal development. However, some synapses appear silent because of a very low probability of glutamate release. They can be converted into functional ones by factors that enhance release probability such as paired-pulse stimulation, increasing the temperature or cyclothiazide (CTZ), a drug that blocks AMPA receptor desensitization and increases transmitter release. Conversely, conducting synapses can be switched off by increasing the frequency of stimulation. Although we cannot exclude that “latent AMPA receptors” can become functional after activity-dependent processes, our results clearly indicate that, in the neonatal hippocampus, a proportion of glutamatergic synaptic connections are presynaptically rather than postsynaptically silent
    corecore