327 research outputs found

    The critical behavior of frustrated spin models with noncollinear order

    Full text link
    We study the critical behavior of frustrated spin models with noncollinear order, including stacked triangular antiferromagnets and helimagnets. For this purpose we compute the field-theoretic expansions at fixed dimension to six loops and determine their large-order behavior. For the physically relevant cases of two and three components, we show the existence of a new stable fixed point that corresponds to the conjectured chiral universality class. This contradicts previous three-loop field-theoretical results but is in agreement with experiments.Comment: 4 pages, RevTe

    Monte Carlo renormalization group study of the Heisenberg and XY antiferromagnet on the stacked triangular lattice and the chiral ϕ4\phi^4 model

    Full text link
    With the help of the improved Monte Carlo renormalization-group scheme, we numerically investigate the renormalization group flow of the antiferromagnetic Heisenberg and XY spin model on the stacked triangular lattice (STA-model) and its effective Hamiltonian, 2N-component chiral ϕ4\phi^4 model which is used in the field-theoretical studies. We find that the XY-STA model with the lattice size 126×144×126126\times 144 \times 126 exhibits clear first-order behavior. We also find that the renormalization-group flow of STA model is well reproduced by the chiral ϕ4\phi^4 model, and that there are no chiral fixed point of renormalization-group flow for N=2 and 3 cases. This result indicates that the Heisenberg-STA model also undergoes first-order transition.Comment: v1:15 pages, 15 figures v2:updated references v3:added comments on the higher order irrelevant scaling variables v4:added results of larger sizes v5:final version to appear in J.Phys.Soc.Jpn Vol.72, No.

    Testing for Features in the Primordial Power Spectrum

    Full text link
    Well-known causality arguments show that events occurring during or at the end of inflation, associated with reheating or preheating, could contribute a blue component to the spectrum of primordial curvature perturbations, with the dependence k^3. We explore the possibility that they could be observably large in CMB, LSS, and Lyman-alpha data. We find that a k^3 component with a cutoff at some maximum k can modestly improve the fits (Delta chi^2=2.0, 5.4) of the low multipoles (l ~ 10 - 50) or the second peak (l ~ 540) of the CMB angular spectrum when the three-year WMAP data are used. Moreover, the results from WMAP are consistent with the CBI, ACBAR, 2dFGRS, and SDSS data when they are included in the analysis. Including the SDSS galaxy clustering power spectrum, we find weak positive evidence for the k^3 component at the level of Delta chi' = 2.4, with the caveat that the nonlinear evolution of the power spectrum may not be properly treated in the presence of the k^3 distortion. To investigate the high-k regime, we use the Lyman-alpha forest data (LUQAS, Croft et al., and SDSS Lyman-alpha); here we find evidence at the level Delta chi^2' = 3.8. Considering that there are two additional free parameters in the model, the above results do not give a strong evidence for features; however, they show that surprisingly large bumps are not ruled out. We give constraints on the ratio between the k^3 component and the nearly scale-invariant component, r_3 < 1.5, over the range of wave numbers 0.0023/Mpc < k < 8.2/Mpc. We also discuss theoretical models which could lead to the k^3 effect, including ordinary hybrid inflation and double D-term inflation models. We show that the well-motivated k^3 component is also a good representative of the generic spikelike feature in the primordial perturbation power spectrum.Comment: 23 pages, 6 figures; added new section on theoretical motivation for k^3 term, and discussion of double D-term hybrid inflation models; title changed, added a new section discussing the generic spikelike features, published in IJMP

    Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in applied magnetic field

    Full text link
    The Heisenberg antiferromagnet on a two-dimensional triangular lattice is a paradigmatic problem in frustrated magnetism. Even in the classical limit, its properties are far from simple. The "120 degree" ground state favoured by the frustrated antiferromagnetic interactions contains a hidden chiral symmetry, and supports two distinct types of excitation. And famously, three distinct phases, including a collinear one-third magnetisation plateau, are stabilised by thermal fluctuations in applied magnetic field. The questions of symmetry-breaking raised by this model are deep and subtle, and after more than thirty years of study, many of the details of its phase diagram remain surprisingly obscure. In this paper we use modern Monte Carlo simulation techniques to determine the finite-temperature phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in applied magnetic field. At low to intermediate values of magnetic field, we find evidence for a continuous phase transition from the paramagnet into the collinear one-third magnetisation plateau, belonging to the three-state Potts universality class. We also find evidence for conventional Berezinskii-Kosterlitz-Thouless transitions from the one-third magnetisation plateau into the canted "Y-state", and into the 2:1 canted phase found at high fields. However, the phase transition from the paramagnet into the 2:1 canted phase, while continuous, does not appear to fall into any conventional universality class. We argue that this, like the chiral phase transition discussed in zero field, deserves further study as an interesting example of a finite-temperature phase transition with compound order-parameter symmetry. We comment on the relevance of these results for experiments on magnetic materials with a triangular lattice.Comment: 15 pages, 12 figures, very minor change

    Phase Transition of XY Model in Heptagonal Lattice

    Full text link
    We numerically investigate the nature of the phase transition of the XY model in the heptagonal lattice with the negative curvature, in comparison to other interaction structures such as a flat two-dimensional (2D) square lattice and a small-world network. Although the heptagonal lattice has a very short characteristic path length like the small-world network structure, it is revealed via calculation of the Binder's cumulant that the former exhibits a zero-temperature phase transition while the latter has the finite-temperature transition of the mean-field nature. Through the computation of the vortex density as well as the correlation function in the low-temperature approximation, we show that the absence of the phase transition originates from the strong spinwave-type fluctuation, which is discussed in relation to the usual 2D XY model.Comment: 5 pages, 6 figures, to be published in Europhys. Let

    Dynamical Fine Tuning in Brane Inflation

    Full text link
    We investigate a novel mechanism of dynamical tuning of a flat potential in the open string landscape within the context of warped brane-antibrane inflation in type IIB string theory. Because of competing effects between interactions with the moduli stabilizing D7-branes in the warped throat and anti-D3-branes at the tip, a stack of branes gives rise to a local minimum of the potential, holding the branes high up in the throat. As branes successively tunnel out of the local minimum to the bottom of the throat the potential barrier becomes lower and is eventually replaced by a flat inflection point, around which the remaining branes easily inflate. This dynamical flattening of the inflaton potential reduces the need to fine tune the potential by hand, and also leads to successful inflation for a larger range of inflaton initial conditions, due to trapping in the local minimum.Comment: 23 pages, 9 figures. v2: Updated D3-dependence in potential, small changes to numerical result

    Flat Energy-Histogram Simulation of the Phase Transition in an Ising Fully Frustrated Lattice

    Full text link
    We show in this paper the results on the phase transition of the so-called fully frustrated simple cubic lattice with the Ising spin model. We use here the Monte Carlo method with the flat energy-histogram Wang-Landau technique which is very powerful to detect weak first-order phase transition. We show that the phase transition is clearly of first order, providing a definite answer to a question raised 25 years ago.Comment: Submitted for publicatio

    Making sense of ultrahigh-resolution movement data: A new algorithm for inferring sites of interest

    Get PDF
    Decomposing the life track of an animal into behavioral segments is a fundamental challenge for movement ecology. The proliferation of high‐resolution data, often collected many times per second, offers much opportunity for understanding animal movement. However, the sheer size of modern data sets means there is an increasing need for rapid, novel computational techniques to make sense of these data. Most existing methods were designed with smaller data sets in mind and can thus be prohibitively slow. Here, we introduce a method for segmenting high‐resolution movement trajectories into sites of interest and transitions between these sites. This builds on a previous algorithm of Benhamou and Riotte‐Lambert (2012). Adapting it for use with high‐resolution data. The data’s resolution removed the need to interpolate between successive locations, allowing us to increase the algorithm’s speed by approximately two orders of magnitude with essentially no drop in accuracy. Furthermore, we incorporate a color scheme for testing the level of confidence in the algorithm's inference (high = green, medium = amber, low = red). We demonstrate the speed and accuracy of our algorithm with application to both simulated and real data (Alpine cattle at 1 Hz resolution). On simulated data, our algorithm correctly identified the sites of interest for 99% of “high confidence” paths. For the cattle data, the algorithm identified the two known sites of interest: a watering hole and a milking station. It also identified several other sites which can be related to hypothesized environmental drivers (e.g., food). Our algorithm gives an efficient method for turning a long, high‐resolution movement path into a schematic representation of broadscale decisions, allowing a direct link to existing point‐to‐point analysis techniques such as optimal foraging theory. It is encoded into an R package called SitesInterest, so should serve as a valuable tool for making sense of these increasingly large data streams
    corecore