6,242 research outputs found
On some geometric features of the Kramer interior solution for a rotating perfect fluid
Geometric features (including convexity properties) of an exact interior
gravitational field due to a self-gravitating axisymmetric body of perfect
fluid in stationary, rigid rotation are studied. In spite of the seemingly
non-Newtonian features of the bounding surface for some rotation rates, we
show, by means of a detailed analysis of the three-dimensional spatial
geodesics, that the standard Newtonian convexity properties do hold. A central
role is played by a family of geodesics that are introduced here, and provide a
generalization of the Newtonian straight lines parallel to the axis of
rotation.Comment: LaTeX, 15 pages with 4 Poscript figures. To be published in Classical
and Quantum Gravit
Multiple scattering formalism for correlated systems: A KKR+DMFT approach
We present a charge and self-energy self-consistent computational scheme for
correlated systems based on the Korringa-Kohn-Rostoker (KKR) multiple
scattering theory with the many-body effects described by the means of
dynamical mean field theory (DMFT). The corresponding local multi-orbital and
energy dependent self-energy is included into the set of radial differential
equations for the single-site wave functions. The KKR Green's function is
written in terms of the multiple scattering path operator, the later one being
evaluated using the single-site solution for the -matrix that in turn is
determined by the wave functions. An appealing feature of this approach is that
it allows to consider local quantum and disorder fluctuations on the same
footing. Within the Coherent Potential Approximation (CPA) the correlated atoms
are placed into a combined effective medium determined by the dynamical mean
field theory (DMFT) self-consistency condition. Results of corresponding
calculations for pure Fe, Ni and FeNi alloys are presented.Comment: 25 pages, 5 fig. acepted PR
Existence of axially symmetric static solutions of the Einstein-Vlasov system
We prove the existence of static, asymptotically flat non-vacuum spacetimes
with axial symmetry where the matter is modeled as a collisionless gas. The
axially symmetric solutions of the resulting Einstein-Vlasov system are
obtained via the implicit function theorem by perturbing off a suitable
spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page
Correlation effects in electronic structure of PuCoGa5
We report on results of the first realistic electronic structure calculations
of the Pu-based PuCoGa5 superconductor based on the dynamical mean field
theory. We find that dynamical correlations due to the local Coulomb
interaction between Pu f-electrons lead to substantial modification of the
electronic structure with a narrow peak being formed in vicinity of the Fermi
energy, in agreement with the experimental photoemission spectra, and in
contrast with the recent calculations within the LDA+U method, where only
static electronic correlations have been included. Both Pu and Co contribute in
equal footing to the narrow peak on the density of states at the Fermi level,
the Co partial density of states being prominently affected by electronic
correlations on the Pu sites. The k-resolved spectral density is calculated and
the theoretical spectral function resolved extended Van Hove singularity near
the Fermi energy. This singularity may lead to enchancement of the magnetic
susceptebility and favour d-wave superconductivity
Half-metallic ferromagnets: From band structure to many-body effects
A review of new developments in theoretical and experimental electronic
structure investigations of half-metallic ferromagnets (HMF) is presented.
Being semiconductors for one spin projection and metals for another ones, these
substances are promising magnetic materials for applications in spintronics
(i.e., spin-dependent electronics). Classification of HMF by the peculiarities
of their electronic structure and chemical bonding is discussed. Effects of
electron-magnon interaction in HMF and their manifestations in magnetic,
spectral, thermodynamic, and transport properties are considered. Especial
attention is paid to appearance of non-quasiparticle states in the energy gap,
which provide an instructive example of essentially many-body features in the
electronic structure. State-of-art electronic calculations for correlated
-systems is discussed, and results for specific HMF (Heusler alloys,
zinc-blende structure compounds, CrO FeO) are reviewed.Comment: to be published in Reviews of Modern Physics, vol 80, issue
Half-Metallic Ferromagnetism and the spin polarization in CrO
We present electronic structure calculations in combination with local and
non-local many-body correlation effects for the half-metallic ferromagnet
CrO. Finite-temperature Dynamical Mean Field Theory results show the
existence of non-quasiparticle states, which were recently observed as almost
currentless minority spin states near the Fermi energy in resonant scattering
experients. At zero temperatures, Variational Cluster Approach calculations
support the half-metallic nature of CrO as seen in superconducting point
contact spectroscopy. The combination of these two techniques allowed us to
qualitatively describe the spin-polarization in CrO.Comment: 5 pages, 3 figure
Half-metallicity in NiMnSb: a Variational Cluster Approach with ab-initio parameters
Electron correlation effects in the half-metallic ferromagnet NiMnSb are
investigated within a combined density functional and many-body approach.
Starting from a realistic multi-orbital Hubbard-model including Mn and Ni-d
orbitals, the many-body problem is addressed via the Variational Cluster
Approach. The density of states obtained in the calculation shows a strong
spectral weight transfer towards the Fermi level in the occupied conducting
majority spin channel with respect to the uncorrelated case, as well as states
with vanishing quasiparticle weight in the minority spin gap. Although the two
features produce competing effects, the overall outcome is a strong reduction
of the spin polarisation at the Fermi level with respect to the uncorrelated
case. This result emphasizes the importance of correlation in this material.Comment: 8 pages, 6 figure
Half-metallic ferromagnetism induced by dynamic electron correlations in VAs
The electronic structure of the VAs compound in the zinc-blende structure is
investigated using a combined density-functional and dynamical mean-field
theory approach. Contrary to predictions of a ferromagnetic semiconducting
ground state obtained by density-functional calculations, dynamical
correlations induce a closing of the gap and produce a half-metallic
ferromagnetic state. These results emphasize the importance of dynamic
correlations in materials suitable for spintronics.Comment: Published in Phys. Rev. Lett. 96, 197203 (2006
- …
