50 research outputs found

    Roadmap on perovskite light-emitting diodes

    Get PDF
    In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to over 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community’s perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization

    Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein

    Get PDF
    Cyclophilin A (CypA) is a typical member of the cyclophilin family of peptidyl-prolyl isomerases and is involved in the replication of several viruses. Previous studies indicate that CypA interacts with influenza virus M1 protein and impairs the early stage of the viral replication. To further understand the molecular mechanism by which CypA impairs influenza virus replication, a 293T cell line depleted for endogenous CypA was established. The results indicated that CypA inhibited the initiation of virus replication. In addition, the infectivity of influenza virus increased in the absence of CypA. Further studies indicated that CypA had no effect on the stages of virus genome replication or transcription and also did not impair the nuclear export of the viral mRNA. However, CypA decreased the viral protein level. Additional studies indicated that CypA enhanced the degradation of M1 through the ubiquitin/proteasome-dependent pathway. Our results suggest that CypA restricts influenza virus replication through accelerating degradation of the M1 protein

    Roadmap on Perovskite Light-Emitting Diodes

    Full text link
    In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to approaching 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community's perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.Comment: 103 pages, 29 figures. This is the version of the article before peer review or editing, as submitted by an author to Journal of Physics: Photonics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices

    No full text
    We report a comprehensive study of the chemistry of perovskite optoelectronic device degradation and show that redox reactions are fundamental to the degradation process for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, CsPbI<sub>3</sub>, and CsPbBr<sub>3</sub> perovskites with Ag, Al, Yb, or Cr contacts. Using in situ X-ray diffraction measurements, we study the chemistry of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite devices equipped with Al electrodes; we find that Al<sup>0</sup> rapidly reduces Pb<sup>2+</sup> to Pb<sup>0</sup>, converting CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> first to (CH<sub>3</sub>NH<sub>3</sub>)<sub>4</sub>PbI<sub>6</sub>·2H<sub>2</sub>O and then to CH<sub>3</sub>NH<sub>3</sub>I. In situ scanning electron microscopy measurements show that moisture enables continued reaction of the Al and perovskite layers by facilitating ion diffusion, before serving as a decomposition reagent for the perovskite film. Redox reactions follow what is expected based on standard electrochemical potentials for Al, Cr, and Yb; for Ag, the redox chemistry is enabled by the presence of iodide. We emphasize that critical chemical reactions can stem from <i>intrinsic interfacial interactions between the layers</i> in a device and not necessarily from external agents; degradation studies must consider the device as an entity, rather than focusing only on the stability of perovskite films
    corecore