229 research outputs found

    Self-Representations: exposure/disguise

    Get PDF

    Gamma ray constraints on the Galactic supernova rate

    Get PDF
    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission

    Gamma ray constraints on the galactic supernova rate

    Get PDF
    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission

    Gamma-Ray Limits on Na-22 Production in Novae

    Get PDF
    Data accumulated from 1980 to1987 by the gamma-ray spectrometer on SMM have been searched for evidence of cosmic line emission at 1.275 MeV. This emission would result from the decay of 22Na, which might be produced by classical nova outbursts. No evidence of any 1.275 MeV emission of celestial origin has been found. A limit of 3×10-6M_sun; is placed on the accumulated 22Na from many novae occurring near the Galactic center, and a limit of 7×10-7M_sun; is placed on the mass of 22Na ejected by the closest of the recent neon-rich novae. These limits, while lower than any previous ones, are not in conflict with recent theoretical predictions of the production of 22Na in novae. The product of the frequency and average initial neon abundance of novae of the neon-rich class is constrained by the Galactic center 22Na limit

    Constraining the Cosmic Star Formation Rate with the MeV Background

    Get PDF
    The Cosmic Gamma-ray Background (CGB) in the MeV regime has been measured with COMPTEL and SMM. The origin of the CGB in this energy regime is believed to be dominated by gamma-rays from Type Ia supernovae. We calculate the CGB spectrum within the framework of FRW cosmology as a function of the cosmic star formation rate, SFR(z). Several estimates of the SFR(z) have been reported since the pioneering work of Madau et al. Here we discuss observational constraints on SFR(z) derived from models of the CGB. In particular, we consider the SFR obtained from Gamma-Ray Burst observations, which increases dramatically with redshift beyond z ~ 1 in contrast to most estimates which saturate or show a mild increase with redshift. Gamma-ray bursts may be the most powerful tracers of star formation in the early universe and thus provide signposts of the initial epoch of element synthesis. The star formation rate implied by GRB statistics results in a gamma-ray background that matches the observations more closely than that inferred from other tracers of star formation. This may provide some support for the GRB/SFR-paradigm, which in turn promises a powerful diagnostic of star formation, and thus cosmic chemical evolution, from the era of Population III stars to the present

    Supernovae and Positron Annihilation Radiation

    Get PDF
    Radioactive nuclei, especially those created in SN explosion, have long been sug-gested to be important contributors of galactic positrons. In this paper we describe the findings of three independent OSSE/SMM/TGRS studies of positron annihi-lation radiation, demonstrating that the three studies are largely in agreement as to the distribution of galactic annihilation radiation. We then assess the predicted yields and distributions of SN-synthesized radionuclei, determining that they are marginally compatible with the findings of the annihilation radiation studies

    Comparative Studies of Line and Continuum Positron Annihilation Radiation

    Get PDF
    Positron annihilation radiation from the Galaxy has been observed by the OSSE, SMM and TGRS instruments. Improved spectral modeling of OSSE observations has allowed studies of the distribution of both positron annihilation radiation components, the narrow line emission at 511 keV and the positronium continuum emission. The results derived for each individual annihilation component are then compared with each other. These comparisons reveal approximate agreement between the distribution of these two emissions. In certain regions of the sky (notably in the vicinity of the previously reported positive latitude enhancement), the distribution of the emissions differ. We discuss these differences and the methods currently being employed to understand whether the differences are physical or a systematic error in the present analysis.Comment: 5 pages, to appear in the proceedings of the Gamma 2001 Symposium (Baltimore, April 2001

    Comparative Studies of Line and Contiuum Positron Annihilation Radiation

    Get PDF
    Positron annihilation radiation from the Galaxy has been observed by the OSSE, SMM and TGRS instruments. Improved spectral modeling of OSSE observa-tions has allowed studies of the distribution of both positron annihilation radiation components, the narrow line emission at 511 keV and the positronium continuum emission. The results derived for each individual annihilation component are then compared with each other. These comparisons reveal approximate agreement between the distribution of these two emissions. In certain regions of the sky (notably in the vicinity of the previously reported positive latitude enhancement), the distribution of the emissions differ. We discuss these differences and the methods currently being employed to understand whether the differences are physical or a systematic error in the present analysis

    Positron Escape from Type Ia Supernovae

    Full text link
    We generate bolometric light curves for a variety of type Ia supernova models at late times, simulating gamma-ray and positron transport for various assumptions about the magnetic field and ionization of the ejecta. These calculated light curve shapes are compared with light curves of specific supernovae for which there have been adequate late observations. %The selection of models is generally not based upon the %ability to fit the late observations, but rather because the %model has been demonstrated by other authors to approximate the spectra %and early light curves of that specific SN. From these comparisons we draw two conclusions: whether a suggested model is an acceptable approximation of a particular event, and, given that it is, the magnetic field characteristics and degree of ionization that are most consistent with the observed light curve shape. For the ten SNe included in this study, five strongly suggest 56^{56}Co positron escape as would be permitted by a weak or radially-combed magnetic field. Of the remaining five SNe, none clearly show the upturned light curve expected for positron trapping in a strong, tangled magnetic field. Chandrasekhar mass models can explain normally, sub-, and super- luminous supernova light curves; sub-Chandrasekhar mass models have difficulties with sub- (and potentially normally) luminous SNe. An estimate of the galactic positron production rate from type Ia SNe is compared with gamma-ray observations of Galactic 511 keV annihilation radiation. Additionally, we emphasize the importance of correctly treating the positron transport for calculations of spectra, or any properties, of type Ia SNe at late epochs (\geq 200 d).Comment: 82 pages including 25 figure
    corecore