53 research outputs found

    Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters

    Full text link
    We present metallicity estimates for seven open clusters based on spectrophotometric indices from moderate-resolution spectroscopy. Observations of field giants of known metallicity provide a correlation between the spectroscopic indices and the metallicity of open cluster giants. We use \chi^2 analysis to fit the relation of spectrophotometric indices to metallicity in field giants. The resulting function allows an estimate of the target-cluster giants' metallicities with an error in the method of \pm0.08 dex. We derive the following metallicities for the seven open clusters: NGC 1245, [m/H]=-0.14\pm0.04; NGC 2099, [m/H]=+0.05\pm0.05; NGC 2324, [m/H]=-0.06\pm0.04; NGC 2539, [m/H]=-0.04\pm0.03; NGC 2682 (M67), [m/H]=-0.05\pm0.02; NGC 6705, [m/H]=+0.14\pm0.08; NGC 6819, [m/H]=-0.07\pm0.12. These metallicity estimates will be useful in planning future extra-solar planet transit searches since planets may form more readily in metal-rich environments.Comment: 38 pages, including 12 figures. Accepted for publication in A

    uvby-Hbeta CCD photometry and membership segregation of the open cluster NGC 2548; Gaps in the Main Sequence of open clusters

    Full text link
    Deep CCD photometry in the uvby-Hbeta intermediate-band system is presented for the cluster NGC 2548 (M 48). A complete membership analysis based on astrometric and photometric criteria is applied. The photometric analysis of a selected sample of stars yields a reddening value of E(b-y)=0.06\pm0.03, a distance modulus of V_0-M_V=9.3\pm0.5 (725 pc) and a metallicity of [Fe/H]= -0.24\pm0.27. Through isochrone fitting we find an age of log t = 8.6\pm0.1 (400 Myr). Our optical photometry and JHK from 2MASS are combined to derive effective temperatures of cluster member stars. The effective temperature distribution along the main sequence of the cluster shows several gaps. A test to study the significance of these gaps in the main sequence of the HR diagram has been applied. The method is also applied to several other open clusters (Pleiades, Hyades, NGC 1817 and M 67) to construct a sequence of metallicities and ages. The comparison of the results of each cluster gives four gaps with high significance (one of them, centred at 4900 K, has not been previously reported).Comment: 11 pages, 8 figures, A&A in press. Corrected typos on Table

    A study of Al 2

    No full text

    Antagonistic functions of LMNA isoforms in energy expenditure and lifespan.

    No full text
    Alternative RNA processing of LMNA pre-mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson-Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation. Here, we investigate the function of lamin C in aging and metabolism using mice that express only this isoform. Intriguingly, these mice live longer, have decreased energy metabolism, increased weight gain, and reduced respiration. In contrast, progerin-expressing mice show increased energy metabolism and are lipodystrophic. Increased mitochondrial biogenesis is found in adipose tissue from HGPS-like mice, whereas lamin C-only mice have fewer mitochondria. Consistently, transcriptome analyses of adipose tissues from HGPS and lamin C-only mice reveal inversely correlated expression of key regulators of energy expenditure, including Pgc1a and Sfrp5. Our results demonstrate that LMNA encodes functionally distinct isoforms that have opposing effects on energy metabolism and lifespan in mammals
    • 

    corecore