137 research outputs found

    Innovative Breakthroughs for the Treatment of Advanced and Metastatic Synovial Sarcoma

    Get PDF
    Simple Summary Synovial sarcoma (SyS) is a rare malignant soft tissue sarcoma bearing the chromosomal translocation t(X;18), which encodes the fusion oncoprotein SS18::SSX. More than 80% of the patients, mainly young in age, are initially diagnosed with localized disease with a 5-year survival rate of 70-80%. Metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease shows a poor prognosis with a 5-year survival rate below 10%, representing an urgent clinical issue. This review will focus on: (i) current front-line therapies; (ii) alternative treatments in second line and beyond settings; and (iii) new epigenetic and immunological strategies. The improved understanding of the SyS molecular biology coupled with the recent development of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells, is offering new promising tools. Clinical trial results underline the need for accurate patient selection based on genetic and tumor immune microenvironment signatures. Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic signature. Over 80% of the patients are initially diagnosed with localized disease and have a 5-year survival rate of 70-80%, but metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease has a 5-year survival rate below 10%, representing a critical issue. This review summarizes the molecular mechanisms behind SyS and illustrates current treatments in front line, second line, and beyond settings. We analyze the use of immune check point inhibitors (ICI) in SyS that do not behave as an ICI-sensitive tumor, claiming the need for predictive genetic signatures and tumor immune microenvironment biomarkers. We highlight the clinical translation of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells. Adoptive cell transfer of engineered T-cell receptor cells targeting selected cancer/testis antigens has shown promising results against metastatic SyS in early clinical trials and further improvements are awaited from refinements involving immune cell engineering and tumor immune microenvironment enhancement

    Cardiocirculatory intraoperative assessment during single-shot caudal anaesthesia in children: comparison between levobupivacaine and ropivacaine

    Get PDF
    BACKGROUND: Caudal block with levobupivacaine or ropivacaine is the most commonly used regional anaesthesia in children. METHODS: The aim of study was to compare the cardiocirculatory profile induced in two matched groups of young patients, submitted to caudal anaesthesia with levobupivacaine or ropivacaine for an elective subumbilical surgery. Sixty children were enrolled: thirty received levopubivacaine 0.25% and thirty ropivacaine 0.2%. Intraoperative heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) were monitored at following times: Ta0 (after anaesthesia induction), Tal (after caudal anaesthesia), Ta2 (five minutes later), Ta3 (ten minutes later), Ts1 (at surgical incision), Ts2, Ts3, Ts4, Ts5 (every 10 minutes during surgery), Taw (at the awakening). RESULTS: In both groups the cardiocirculatory trend remained within normal ranges at all times considered, demonstrating the safety of the method with both drugs. Both groups showed a similar trend at the different monitoring times: low decrease in HR, SBP and DBP after caudal block, slight increase in parameters after skin incision, slight decrease during surgery, increase at awakening. Regarding SBP and DBP, the levobupivacaine group children generally showed higher levels compared to the ropivacaine group, especially for DBP. CONCLUSIONS: Paediatric caudal anaesthesia is an effective method with an very infrequent complication rate. Possible hypotheses for differing haemodynamic behaviour could include a stronger vasoconstriction reflex of innervated areas during caudal anaesthesia with levobupivacaine and a lower levobupivacaine induced block of the sympathetic fibers, related to different pharmacokinetic profile of low concentrations of the local anaesthetics used in paediatric epidural space

    Uncoupling of growth inhibition and differentiation in dexamethasone-treated human rhabdomyosarcoma cells.

    Get PDF
    The effects of dexamethasone, a synthetic glucocorticoid, and of N,N-dimethylformamide on in vitro growth and differentiation and on proto-oncogene expression of human rhabdomyosarcoma cells were studied. RD/18 clone cells (derived from the embryonal rhabdomyosarcoma cell line RD) treated with 100 nM dexamethasone showed an almost complete block of differentiation: about 5% myosin-positive cells were observed after 2 weeks of culture in dexamethasone-supplemented differentiation medium, compared to 20% of untreated cultures. Dexamethasone also induced a 20-30% growth inhibition and a more flattened morphology. The treatment with N,N-dimethylformamide induced a significantly increased proportion of myosin-positive cells (reaching about 30%) and a 40% growth inhibition. Induction of differentiation inversely correlated with the levels of c-myc proto-oncogene expression: after a 2 week culture dexamethasone-treated cells showed the highest c-myc expression and N,N-dimethylformamide-treated cells the lowest. Culture conditions per se down-modulated c-erbB1 and up-regulated c-jun expression, with no relationship to the differentiation pattern. Other proto-oncogenes were not expressed (c-sis, N-myc, c-mos, c-myb) or were not modulated (c-fos, c-raf). Therefore dexamethasone and N,N-dimethylformamide, both causing a decreased growth rate, showed opposing actions on myogenic differentiation and on c-myc proto-oncogene expression of human rhabdomyosarcoma cells

    Wild-type p53-mediated down-modulation of interleukin 15 and interleukin 15 receptors in human rhabdomyosarcoma cells.

    Get PDF
    We recently reported that rhabdomyosarcoma cell lines express and secrete interleukin 15 (IL-15), a tightly regulated cytokine with IL-2-like activity. To test whether the p53-impaired function that is frequently found in this tumour type could play a role in the IL-15 production, wild-type p53 gene was transduced in the human rhabdomyosarcoma cell line RD (which harbours a mutated p53 gene), and its effect on proliferation and expression of IL-15 was studied. Arrest of proliferation was induced by wild-type p53; increased proportions of G1-arrested cells and of apoptotic cells were observed. A marked down-modulation of IL-15 expression, at both the mRNA and protein level, was found in p53-transduced cells. Because a direct effect of IL-15 on normal muscle cells has been reported, the presence of IL-15 membrane receptors was studied by cytofluorometric analysis. Rhabdomyosarcoma cells showed IL-15 membrane receptors, which are down-modulated by wild-type p53 transfected gene. In conclusion, wild-type p53 transduction in human rhabdomyosarcoma cells induces the down-modulation of both IL-15 production and IL-15 receptor expression

    Interleukin-15 is required for immunosurveillance and immunoprevention of HER2/neu-driven mammary carcinogenesis

    Get PDF
    We previously demonstrated that HER2/neu-driven mammary carcinogenesis can be prevented by an interleukin-12 (IL-12)-adjuvanted allogeneic HER2/neu-expressing cell vaccine. Since IL-12 can induce the release of interleukin-15 (IL-15), in the present study we investigated the role played by IL-15 in HER2/neu driven mammary carcinogenesis and in its immunoprevention
    corecore