190 research outputs found

    Transmission electron microscopy of an interplanetary dust particle with links to CI chondrites

    Get PDF
    The majority of hydrated interplanetary dust particles (IDPs) have compositions that resemble CI and CM chondrites, however, their mineralogies are most similar to the fine grained material in certain altered type-3 carbonaceous and ordinary chondrites. During the transmission electron microscope studies of hydrated IDPs, a unique particle was discovered whose mineralogy is very similar to that reported from CI chondrites. W7013F5 is the first IDP whose mineralogy and chemistry approximates that of CI chondrites. The similarity in mineralogy and mineral chemistry suggests that W7013F5 was altered under conditions similar to those that existed on the CI parent bodies

    The Ingredients of Healthy Brain and Child Development

    Get PDF
    This article by Pat Levitt and Kathie L. Eagleson explains critical developmental stages in early childhood and adolescent brain development. Levitt and Eagleson start by dispelling certain misconceptions about early brain development and then examining the interaction between biological events, social and emotional development, and the role played by early childhood experiences in healthy brain development. Finally, the article discusses the importance of intervention programs on healthy brain development and positive child, adolescent, and adult outcomes

    Randy Lee, Our Friend

    Get PDF

    Current concepts in targeted therapies for the pathophysiology of diabetic microvascular complications

    Get PDF
    Microvascular complications characterized by retinopathy, nephropathy, and neuropathy are highly prevalent among diabetics. Glycemic control has long been the mainstay for preventing progression of these complications; however, such control is not easily achieved. Currently, alternative adjunctive approaches to treating and preventing microvascular damage are being undertaken by targeting the molecular pathogenesis of diabetic complications. This review summarizes the specific pathogenic mechanisms of microvascular complications for which clinical therapies have been developed, including the polyol pathway, advanced glycation end products, protein kinase c, vascular epithelium growth factor, and the superoxide pathway. The review further focuses on therapies for these targets that are currently available or are undergoing late-stage clinical trials

    Mapping the Economic Contribution of Women Entrepreneurs

    Get PDF
    Abstrac

    Early Mars: A Warm Wet Niche for Life

    Get PDF
    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution had conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 Ma of Martian history were ripe for life to develop because of the abundance of: (i) Water-as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at approx.3.9 Ga, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic patterns in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 Ma?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve

    Electron energy-loss spectroscopy of carbon in interplanetary dust particles

    Get PDF
    The nature of the carbon-bearing phases in IDP's provides information regarding the chemical and physical processes involved in the formation and evolution of the early solar system. Several carbon-bearing materials have been observed in IDP's, but details of their nature, abundance, and distribution are still poorly known. A knowledge of the abundance and nature of carbon in IDP's is useful in constraining the sources of IDP's and for comparisons with other chondritic materials. Estimates of carbon abundance in anhydrous and hydrated IDP's indicate that most of these particles have significantly higher carbon than the carbonaceous chondrites. Mineralogical analyses show that carbonates are only a minor component of most hydrated IDP's, and so the high carbon abundances in this group of IDP's indicates that other carbon-bearing phases are present in significant concentrations. Using the technique of electron energy-loss spectroscopy (EELS), we have identified two forms of carbon in a hydrated IDP, oxidized carbon (carbonates), and amorphous elemental carbon

    Development of Life on Early Mars

    Get PDF
    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution encompassed conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water- as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at ~3.9 Gy, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H20, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 My?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve). The commonly stated requirement that life would need hundreds of millions of year to get started is only an assumption; we know of no evidence that requires such a long interval for the development of life, if the proper habitable conditions are meet. Perhaps it could start in a very short interval during the first tens of millions of years after crustal formation. Even with impact-driven extinction events, such a short start-up time would allow life to restart multiple times until it persevered. If panspermia is considered, life could be introduced as soon as liquid surface water was present and could instantly thrive and spread
    corecore