1,788 research outputs found

    Three-dimensional charge transport mapping by two-photon absorption edge transient-current technique in synthetic single-crystalline diamond

    Full text link
    We demonstrate the application of two-photon absorption transient current technique to wide bandgap semiconductors. We utilize it to probe charge transport properties of single-crystal Chemical Vapor Deposition (scCVD) diamond. The charge carriers, inside the scCVD diamond sample, are excited by a femtosecond laser through simultaneous absorption of two photons. Due to the nature of two-photon absorption, the generation of charge carriers is confined in space (3-D) around the focal point of the laser. Such localized charge injection allows to probe the charge transport properties of the semiconductor bulk with a fine-grained 3-D resolution. Exploiting spatial confinement of the generated charge, the electrical field of the diamond bulk was mapped at different depths and compared to an X-ray diffraction topograph of the sample. Measurements utilizing this method provide a unique way of exploring spatial variations of charge transport properties in transparent wide-bandgap semiconductors.Comment: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters and may be found at https://doi.org/10.1063/1.509085

    Attosecond screening dynamics mediated by electron-localization

    Full text link
    Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong electron interaction offers a fast and efficient lever to manipulate their properties with light, creating promising potential for next-generation electronics. However, the underlying dynamics is a fast and intricate interplay of polarization and screening effects, which is poorly understood. It is hidden below the femtosecond timescale of electronic thermalization, which follows the light-induced excitation. Here, we investigate the many-body electron dynamics in transition metals before thermalization sets in. We combine the sensitivity of intra-shell transitions to screening effects with attosecond time resolution to uncover the interplay of photo-absorption and screening. First-principles time-dependent calculations allow us to assign our experimental observations to ultrafast electronic localization on d-orbitals. The latter modifies the whole electronic structure as well as the collective dynamic response of the system on a timescale much faster than the light-field cycle. Our results demonstrate a possibility for steering the electronic properties of solids prior to electron thermalization, suggesting that the ultimate speed of electronic phase transitions is limited only by the duration of the controlling laser pulse. Furthermore, external control of the local electronic density serves as a fine tool for testing state-of-the art models of electron-electron interactions. We anticipate our study to facilitate further investigations of electronic phase transitions, laser-metal interactions and photo-absorption in correlated electron systems on its natural timescale

    Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein

    Get PDF
    Pathogen recognition first occurs at the plasma membrane, where receptor-like kinases perceive pathogen-derived molecules and initiate immune responses. To abrogate this immune response, pathogens evolved effector proteins that act as virulence factors, often following delivery to the host cell. Plants evolved intracellular receptors, known as NOD-like receptors (NLRs), to detect effectors, thereby ensuring activation of effector-triggered immunity. However, despite their importance in immunity, the molecular mechanisms underlying effector recognition and subsequent immune activation by membrane-localized NLRs remain to be fully elucidated. Our analyses reveal the importance of and need for self-association and the coordinated interplay of specific domains and conserved residues for NLR activity. This could provide strategies for crop improvement, contributing to effective, environmentally friendly, and sustainable solutions for future agriculture

    Increasing prevalence of obesity and diabetes among patients evaluated for liver transplantation in a Swiss tertiary referral center: a 10-year retrospective analysis.

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is now the first cause of chronic liver disease in developed countries. We aimed to assess trends in the prevalence of obesity, type 2 diabetes mellitus (T2DM) and NAFLD in patients undergoing liver transplantation evaluation and to assess whether obese patients were less likely to be listed or had an increased drop-out rate after listing. We conducted a retrospective study of all consecutive patients who underwent liver transplantation evaluation at a Swiss tertiary referral centre between January 2009 and March 2020. A total of 242 patients were included, 83% were male. The median age was 59 years (IQR, 51-64 years). The most common causes of end-stage liver disease were viral hepatitis (28%), alcoholic liver disease (21%) and NAFLD (12%). Obesity was present in 28% of our cohort, with a significant increase over time. Prevalence of type 2 diabetes mellitus followed the same trend (p = 0.02). The proportions of non-listed and listed obese patients did not differ (21% vs. 30% respectively; p = 0.3). The prevalence of obesity and type 2 diabetes mellitus significantly increased over our study period. Obese patients had similar chances of being listed. The landscape of liver transplantation indications is shifting towards NAFLD, highlighting the urgent need to prevent NAFLD progression

    TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis

    Get PDF
    Multicellular organisms must have complex immune systems to detect and defeat pathogens. Plants rely on nucleotide binding site leucine rich repeat (NLR) intracellular receptors to detect pathogens. For hundreds of years, plant breeders have selected for disease-resistance traits derived from NLR genes. Despite the molecular cloning of the first NLRs more than 20 y ago, we still do not understand how these sensors function at a mechanistic level. Here, we identified a truncated NLR protein that activates cell death in response to a specific pathogen effector. Understanding how truncated NLRs function will provide a better mechanistic understanding of the plant immune system and an expanded toolkit with which to engineer disease resistance rationally in crops

    Oligodendroglia Are Particularly Vulnerable to Oxidative Damage After Neurotrauma In Vivo.

    Get PDF
    In the paper "Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo," we determined the extent of oxidative damage to specific cellular subpopulations and structures within regions vulnerable to secondary degeneration and assessed the effect this had on oligodendroglial function. Comparative assessment of oxidative damage demonstrated selective vulnerability of oligodendroglia, specifically oligodendrocyte progenitor cells (OPCs) to DNA oxidation in vivo. Immunohistochemical fate mapping along the oligodendroglial lineage showed a transient susceptibility of these cells to DNA oxidation, protein nitration, and lipid peroxidation, with mature oligodendrocytes derived immediately after injury more vulnerable to DNA oxidation than their counterparts existing at the time of injury or later derived. In situ hybridization demonstrated a reduction in myelin regulatory factor (MyRF) messenger RNA (mRNA) fluorescence in newly derived mature oligodendrocytes, suggesting a compromise in the production and maintenance of the myelin sheath in these cells. The data imply a deficit in the normal differentiation of OPCs to myelinating oligodendrocytes, associated with a transient increase in oxidative damage, which may contribute to the dysmyelinating phenotype seen at chronic time points after injury. Identifying and understanding the sources of this oxidative damage is integral for the development of therapeutic interventions for neurotrauma

    Thermal Decomposition Kinetics and Mechanism of In-Situ Prepared Bio-Based Poly(propylene 2,5-furan dicarboxylate)/Graphene Nanocomposites

    Get PDF
    Bio-based polyesters are a new class of materials that are expected to replace their fossil-based homologues in the near future. In this work, poly(propylene 2,5-furandicarboxylate) (PPF) nanocomposites with graphene nanoplatelets were prepared via the in-situ melt polycondensation method. The chemical structure of the resulting polymers was confirmed by 1H-NMR spectroscopy. Thermal stability, decomposition kinetics and the decomposition mechanism of the PPF nanocomposites were studied in detail. According to thermogravimetric analysis results, graphene nanoplatelets did nοt affect the thermal stability of PPF at levels of 0.5, 1.0 and 2.5 wt.%, but caused a slight increase in the activation energy values. Pyrolysis combined with gas chromatography and mass spectroscopy revealed that the decomposition mechanism of the polymer was not altered by the presence of graphene nanoplatelets but the extent of secondary homolytic degradation reactions was increased
    corecore