34 research outputs found

    Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi

    Get PDF
    This article is the ninth in the series of Fungal Diversity Notes, where 107 taxa distributed in three phyla, nine classes, 31 orders and 57 families are described and illustrated. Taxa described in the present study include 12 new genera, 74 new species, three new combinations, two reference specimens, a re-circumscription of the epitype, and 15 records of sexualasexual morph connections, new hosts and new geographical distributions. Twelve new genera comprise Brunneofusispora, Brunneomurispora, Liua, Lonicericola, Neoeutypella, Paratrimmatostroma, Parazalerion, Proliferophorum, Pseudoastrosphaeriellopsis, Septomelanconiella, Velebitea and Vicosamyces. Seventy-four new species are Agaricus memnonius, A. langensis, Aleurodiscus patagonicus, Amanita flavoalba, A. subtropicana, Amphisphaeria mangrovei, Baorangia major, Bartalinia kunmingensis, Brunneofusispora sinensis, Brunneomurispora lonicerae, Capronia camelliaeyunnanensis, Clavulina thindii, Coniochaeta simbalensis, Conlarium thailandense, Coprinus trigonosporus, Liua muriformis, Cyphellophora filicis, Cytospora ulmicola, Dacrymyces invisibilis, Dictyocheirospora metroxylonis, Distoseptispora thysanolaenae, Emericellopsis koreana, Galiicola baoshanensis, Hygrocybe lucida, Hypoxylon teeravasati, Hyweljonesia indica, Keissleriella caraganae, Lactarius olivaceopallidus, Lactifluus midnapurensis, Lembosia brigadeirensis, Leptosphaeria urticae, Lonicericola hyaloseptispora, Lophiotrema mucilaginosis, Marasmiellus bicoloripes, Marasmius indojasminodorus, Micropeltis phetchaburiensis, Mucor orantomantidis, Murilentithecium lonicerae, Neobambusicola brunnea, Neoeutypella baoshanensis, Neoroussoella heveae, Neosetophoma lonicerae, Ophiobolus malleolus, Parabambusicola thysanolaenae, Paratrimmatostroma kunmingensis, Parazalerion indica, Penicillium dokdoense, Peroneutypa mangrovei, Phaeosphaeria cycadis, Phanerochaete australosanguinea, Plectosphaerella kunmingensis, Plenodomus artemisiae, P. lijiangensis, Proliferophorum thailandicum, Pseudoastrosphaeriellopsis kaveriana, Pseudohelicomyces menglunicus, Pseudoplagiostoma mangiferae, Robillarda mangiferae, Roussoella elaeicola, Russula choptae, R. uttarakhandia, Septomelanconiella thailandica, Spencermartinsia acericola, Sphaerellopsis isthmospora, Thozetella lithocarpi, Trechispora echinospora, Tremellochaete atlantica, Trichoderma koreanum, T. pinicola, T. rugulosum, Velebitea chrysotexta, Vicosamyces venturisporus, Wojnowiciella kunmingensis and Zopfiella indica. Three new combinations are Baorangia rufomaculata, Lanmaoa pallidorosea and Wojnowiciella rosicola. The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated. The epitype of Sarcopeziza sicula is re-circumscribed based on cyto- and histochemical analyses. The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time. In addition, the new host records and country records are Amanita altipes, A. melleialba, Amarenomyces dactylidis, Chaetosphaeria panamensis, Coniella vitis, Coprinopsis kubickae, Dothiorella sarmentorum, Leptobacillium leptobactrum var. calidus, Muyocopron lithocarpi, Neoroussoella solani, Periconia cortaderiae, Phragmocamarosporium hederae, Sphaerellopsis paraphysata and Sphaeropsis eucalypticola

    2020 roadmap on solid-state batteries

    Get PDF
    Li-ion batteries have revolutionized the portable electronics industry and empowered the electric vehicle (EV) revolution. Unfortunately, traditional Li-ion chemistry is approaching its physicochemical limit. The demand for higher density (longer range), high power (fast charging), and safer EVs has recently created a resurgence of interest in solid state batteries (SSB). Historically, research has focused on improving the ionic conductivity of solid electrolytes, yet ceramic solids now deliver sufficient ionic conductivity. The barriers lie within the interfaces between the electrolyte and the two electrodes, in the mechanical properties throughout the device, and in processing scalability. In 2017 the Faraday Institution, the UK's independent institute for electrochemical energy storage research, launched the SOLBAT (solid-state lithium metal anode battery) project, aimed at understanding the fundamental science underpinning the problems of SSBs, and recognising that the paucity of such understanding is the major barrier to progress. The purpose of this Roadmap is to present an overview of the fundamental challenges impeding the development of SSBs, the advances in science and technology necessary to understand the underlying science, and the multidisciplinary approach being taken by SOLBAT researchers in facing these challenges. It is our hope that this Roadmap will guide academia, industry, and funding agencies towards the further development of these batteries in the future

    Kinetic Study of Propylene Polymerization Using Et(H 4

    No full text

    Do Small Businesses Create More Jobs? New Evidence for the United States from the National Establishment Time Series

    No full text
    We use the National Establishment Time Series (NETS) to revisit the debate about the role of small businesses in job creation (Birch, 1987; Davis, Haltiwanger, & Schuh, 1996a). Using the NETS data, we examine evidence for the overall economy, as well as for different sectors. The results indicate that small firms and small establishments create more jobs, on net, although the difference is much smaller than Birch's methods suggest. Moreover, in the recent period we study, a negative relationship between establishment size and net job creation holds for both the manufacturing and services sectors. © 2011 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.

    Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries

    No full text
    Hybrid solid-state batteries using a bilayer of ceramic and solid polymer electrolytes may offer advantages over using a single type of solid electrolyte alone. However, the impedance to Li+ transport across interfaces between different electrolytes can be high. It is important to determine the resistance to Li+ transport across these heteroionic interfaces, as well as to understand the underlying causes of these resistances; in particular, whether chemical interphase formation contributes to giving high resistances, as in the case of ceramic/liquid electrolyte interfaces. In this work, two ceramic electrolytes, Li3PS4 (LPS) and Li6.5La3Zr1.5Ta0.5O12 (LLZTO), were interfaced with the solid polymer electrolyte PEO10:LiTFSI and the interfacial resistances were determined by impedance spectroscopy. The LLZTO/polymer interfacial resistance was found to be prohibitively high but, in contrast, a low resistance was observed at the LPS/polymer interface that became negligible at a moderately elevated temperature of 50 °C. Chemical characterization of the two interfaces was carried out, using depth-profiled X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, to determine whether the interfacial resistance was correlated with the formation of an interphase. Interestingly, no interphase was observed at the higher resistance LLZTO/polymer interface, whereas LPS was observed to react with the polymer electrolyte to form an interphase
    corecore