24 research outputs found

    High-Frequency, Low-Magnitude Vibration Does Not Prevent Bone Loss Resulting from Muscle Disuse in Mice following Botulinum Toxin Injection

    Get PDF
    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16–18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ±0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12±9% and 7±6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX

    Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel

    No full text
    Elemental boron has one of the highest volumetric heats of combustion known and is therefore of interest as a high energy density fuel. The fact that boron combustion is inherently a heterogeneous process makes rapid efficient combustion difficult. An obvious strategy is to increase the surface area/volume ratio by decreasing the particle size. This approach is limited by the fact that boron forms a ∼0.5 nm thick native oxide layer, which not only inhibits combustion, but also consumes an increasing fraction of the particle mass as the size is decreased. Another strategy might be to coat the boron particles with a material (e.g., catalyst) to enhance combustion of either the boron itself or of a hydrocarbon carrier fuel. We present a simple, scalable, one-step process for generating air-stable boron nanoparticles that are unoxidized, soluble in hydrocarbons, and coated with a combustion catalyst. Ball milling is used to produce ∼50 nm particles, protected against room temperature oxidation by oleic acid functionalization, and optionally coated with catalyst. Scanning and transmission electron microscopy and dynamic light scattering were used to investigate size distributions, with X-ray photoelectron spectroscopy to probe the boron surface chemistry
    corecore