29,009 research outputs found

    Planet Shadows in Protoplanetary Disks. I: Temperature Perturbations

    Full text link
    Planets embedded in optically thick passive accretion disks are expected to produce perturbations in the density and temperature structure of the disk. We calculate the magnitudes of these perturbations for a range of planet masses and distances. The model predicts the formation of a shadow at the position of the planet paired with a brightening just beyond the shadow. We improve on previous work on the subject by self-consistently calculating the temperature and density structures under the assumption of hydrostatic equilibrium and taking the full three-dimensional shape of the disk into account rather than assuming a plane-parallel disk. While the excursion in temperatures is less than in previous models, the spatial size of the perturbation is larger. We demonstrate that a self-consistent calculation of the density and temperature structure of the disk has a large effect on the disk model. In addition, the temperature structure in the disk is highly sensitive to the angle of incidence of stellar irradition at the surface, so accurately calculating the shape of the disk surface is crucial for modeling the thermal structure of the disk.Comment: 14 pages, 14 figures. To appear in Ap

    Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions

    Full text link
    We describe the structure of solutions of the kinetic Fokker-Planck equations in domains with boundaries near the singular set in one-space dimension. We study in particular the behaviour of the solutions of this equation for inelastic boundary conditions which are characterized by means of a coefficient rr describing the amount of energy lost in the collisions of the particles with the boundaries of the domain. A peculiar feature of this problem is the onset of a critical exponent rc which follows from the analysis of McKean (cf. [26]) of the properties of the stochastic process associated to the Fokker-Planck equation under consideration. In this paper, we prove rigorously that the solutions of the considered problem are nonunique if r<rcr < r_c and unique if rc<r1r_{c}<r\leq 1. In particular, this nonuniqueness explains the different behaviours found in the physics literature for numerical simulations of the stochastic differential equation associated to the Fokker-Planck equation. In the proof of the results of this paper we use several asymptotic formulas and computations in the companion paper [16].Comment: 64 pages, 1 figure. Previous version has been split into tw

    Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability.

    Get PDF
    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer's disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1-40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3-42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3-42 and Aβ1-42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3-42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3-42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3-42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability

    Surface segregation and the Al problem in GaAs quantum wells

    Full text link
    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Alx_xGa1x_{1-x}As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Alx_xGa1x_{1-x}As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Alx_xGa1x_{1-x}As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking

    Synchronization of coupled optical microresonators

    Full text link
    The phenomenon of synchronization occurs universally across the natural sciences and provides critical insight into the behavior of coupled nonlinear dynamical systems. It also offers a powerful approach to robust frequency or temporal locking in diverse applications including communications, superconductors, and photonics. Here we report the experimental synchronization of two coupled soliton modelocked chip-based frequency combs separated over distances of 20 m. We show that such a system obeys the universal Kuramoto model for synchronization and that the cavity solitons from the microresonators can be coherently combined which overcomes the fundamental power limit of microresonator-based combs. This study could significantly expand applications of microresonator combs, and with its capability for massive integration, offers a chip-based photonic platform for exploring complex nonlinear systems

    Hybridization gap and Fano resonance in SmB6{_6}

    Full text link
    We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the "Kondo insulator" SmB6_6. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstructed, Sm- or B-terminated surfaces were found. On the smallest patches, clear indications for the hybridization gap and inter-multiplet transitions were observed. On non-reconstructed surface areas large enough for coherent co-tunneling we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure.Comment: 5 pages, 4 figure
    corecore