562 research outputs found
The Einstein 3-form G_a and its equivalent 1-form L_a in Riemann-Cartan space
The definition of the Einstein 3-form G_a is motivated by means of the
contracted 2nd Bianchi identity. This definition involves at first the complete
curvature 2-form. The 1-form L_a is defined via G_a = L^b \wedge #(o_b \wedge
o_a). Here # denotes the Hodge-star, o_a the coframe, and \wedge the exterior
product. The L_a is equivalent to the Einstein 3-form and represents a certain
contraction of the curvature 2-form. A variational formula of Salgado on
quadratic invariants of the L_a 1-form is discussed, generalized, and put into
proper perspective.Comment: LaTeX, 13 Pages. To appear in Gen. Rel. Gra
Perfect hypermomentum fluid: variational theory and equations of motion
The variational theory of the perfect hypermomentum fluid is developed. The
new type of the generalized Frenkel condition is considered. The Lagrangian
density of such fluid is stated, and the equations of motion of the fluid and
the Weyssenhoff-type evolution equation of the hypermomentum tensor are
derived. The expressions of the matter currents of the fluid (the canonical
energy-momentum 3-form, the metric stress-energy 4-form and the hypermomentum
3-form) are obtained. The Euler-type hydrodynamic equation of motion of the
perfect hypermomentum fluid is derived. It is proved that the motion of the
perfect fluid without hypermomentum in a metric-affine space coincides with the
motion of this fluid in a Riemann space.Comment: REVTEX, 23 pages, no figure
Wormholes in spacetime with torsion
Analytical wormhole solutions in theory are presented. It is discussed
whether the extremely short range repulsive forces, related to the spin angular
momentum of matter, could be the ``carrier'' of the exoticity that threads the
wormhole throat.Comment: 10 pages revte
Linear Einstein equations and Kerr-Schild maps
We prove that given a solution of the Einstein equations for the
matter field , an autoparallel null vector field and a solution
of the linearized Einstein equation on the
given background, the Kerr-Schild metric ( arbitrary constant) is an exact solution of the Einstein equation for the
energy-momentum tensor . The mixed form of the Einstein equation for
Kerr-Schild metrics with autoparallel null congruence is also linear. Some more
technical conditions hold when the null congruence is not autoparallel. These
results generalize previous theorems for vacuum due to Xanthopoulos and for
flat seed space-time due to G\"{u}rses and G\"{u}rsey.Comment: 9 pages, accepted by Class. Quant. Gra
Lattice calculations on the spectrum of Dirac and Dirac-K\"ahler operators
We present a matrix technique to obtain the spectrum and the analytical index
of some elliptic operators defined on compact Riemannian manifolds. The method
uses matrix representations of the derivative which yield exact values for the
derivative of a trigonometric polynomial. These matrices can be used to find
the exact spectrum of an elliptic operator in particular cases and in general,
to give insight into the properties of the solution of the spectral problem. As
examples, the analytical index and the eigenvalues of the Dirac operator on the
torus and on the sphere are obtained and as an application of this technique,
the spectrum of the Dirac-Kahler operator on the sphere is explored.Comment: 11 page
Darboux coordinates for (first order) tetrad gravity
The Hamiltonian form of the Hilbert action in the first order tetrad
formalism is examined. We perform a non-linear field redefinition of the
canonical variables isolating the part of the spin connection which is
canonically conjugate to the tetrad. The geometrical meaning of the constraints
written in these new variables is examined.Comment: 12 pages, Latex. Minor presentation changes and some references
added. Version to appear in Classical and Quantum Gravit
New positive small vacuum region gravitational energy expressions
We construct an infinite number of new holonomic quasi-local gravitational
energy-momentum density pseudotensors with good limits asymptotically and in
small regions, both materially and in vacuum. For small vacuum regions they are
all a positive multiple of the Bel-Robinson tensor and consequently have
positive energy.Comment: 4 page
3-dimensional Cauchy-Riemann structures and 2nd order ordinary differential equations
The equivalence problem for second order ODEs given modulo point
transformations is solved in full analogy with the equivalence problem of
nondegenerate 3-dimensional CR structures. This approach enables an analog of
the Feffereman metrics to be defined. The conformal class of these (split
signature) metrics is well defined by each point equivalence class of second
order ODEs. Its conformal curvature is interpreted in terms of the basic point
invariants of the corresponding class of ODEs
Nonsingular, big-bounce cosmology from spinor-torsion coupling
The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of
general relativity that the affine connection be symmetric by regarding its
antisymmetric part, the torsion tensor, as a dynamical variable. The minimal
coupling between the torsion tensor and Dirac spinors generates a spin-spin
interaction which is significant in fermionic matter at extremely high
densities. We show that such an interaction averts the unphysical big-bang
singularity, replacing it with a cusp-like bounce at a finite minimum scale
factor, before which the Universe was contracting. This scenario also explains
why the present Universe at largest scales appears spatially flat, homogeneous
and isotropic.Comment: 7 pages; published versio
Maxwell Fields and Shear-Free Null Geodesic Congruences
We study and report on the class of vacuum Maxwell fields in Minkowski space
that possess a non-degenerate, diverging, principle null vector field (null
eigenvector field of the Maxwell tensor) that is tangent to a shear-free null
geodesics congruence. These congruences can be either surface forming (the
tangent vectors proportional to gradients) or not, i.e., the twisting
congruences. In the non-twisting case, the associated Maxwell fields are
precisely the Lienard-Wiechert fields, i.e., those Maxwell fields arising from
an electric monopole moving on an arbitrary worldline. The null geodesic
congruence is given by the generators of the light-cones with apex on the
world-line. The twisting case is much richer, more interesting and far more
complicated. In a twisting subcase, where our main interests lie, it can be
given the following strange interpretation. If we allow the real Minkowski
space to be complexified so that the real Minkowski coordinates x^a take
complex values, i.e., x^a => z^a=x^a+iy^a with complex metric g=eta_abdz^adz^b,
the real vacuum Maxwell equations can be extended into the complex and
rewritten as curlW =iWdot, divW with W =E+iB. This subcase of Maxwell fields
can then be extended into the complex so as to have as source, a complex
analytic world-line, i.e., to now become complex Lienard-Wiechart fields. When
viewed as real fields on the real Minkowski space, z^a=x^a, they possess a real
principle null vector that is shear-free but twisting and diverging. The twist
is a measure of how far the complex world-line is from the real 'slice'. Most
Maxwell fields in this subcase are asymptotically flat with a time-varying set
of electric and magnetic moments, all depending on the complex displacements
and the complex velocities.Comment: 3
- …