81,006 research outputs found
Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra
A comprehensive quantitative rescattering (QRS) theory for describing the
production of high-energy photoelectrons generated by intense laser pulses is
presented. According to the QRS, the momentum distributions of these electrons
can be expressed as the product of a returning electron wave packet with the
elastic differential cross sections (DCS) between free electrons with the
target ion. We show that the returning electron wave packets are determined
mostly by the lasers only, and can be obtained from the strong field
approximation. The validity of the QRS model is carefully examined by checking
against accurate results from the solution of the time-dependent Schr\"odinger
equation for atomic targets within the single active electron approximation. We
further show that experimental photoelectron spectra for a wide range of laser
intensity and wavelength can be explained by the QRS theory, and that the DCS
between electrons and target ions can be extracted from experimental
photoelectron spectra. By generalizing the QRS theory to molecular targets, we
discuss how few-cycle infrared lasers offer a promising tool for dynamic
chemical imaging with temporal resolution of a few femtoseconds.Comment: 19 pages, 19 figure
Mass Spectrum and Bounds on the Couplings in Yukawa Models With Mirror-Fermions
The symmetric Yukawa model with mirror-fermions
in the limit where the mirror-fermion is decoupled is studied both analytically
and numerically. The bare scalar self-coupling is fixed at zero and
infinity. The phase structure is explored and the relevant phase transition is
found to be consistent with a second order one. The fermionic mass spectrum
close to that transition is discussed and a first non-perturbative estimate of
the influence of fermions on the upper and lower bounds on the renormalized
scalar self-coupling is given. Numerical results are confronted with
perturbative predictions.Comment: 7 (Latex) page
Investigation of superlattice device structures
This report describes the investigation of growth properties, and the structure of epitaxial multilayer Si(Si(1x)Ge(x)) films grown on bulk Silicon Substrates. It also describes the fabrication and characterization of MOSFET and MESFET devices made on these epitaxial films. Films were grown in a CVD reactor using hydrides of Si and Ge with H2 and He as carrier gases. Growth temperatures were between 900 C and 1050 C with most films grown at 1000 C. Layer thickness was between 300A and 2000A and total film thickness was between 0.25 micro m and 7 micro m. The Ge content (X) in the alloy layers was between .05 and 0.2. N-type multilayer films grown on (100) p-type Si showed Hall mobility in the range 1000 to 1500 sq cm/v for an average carrier concentration of approx. 10 to the 16th power/cu cm. This is up to 50% higher than the Hall mobility observed in epitaxial Si films grown under the same conditions and with the same average carrier concentration. The mobility enhancement occurred in films with average carrier concentration (n) from 0.7 x 10 to the 16th power to 2 x 10 to the 17th power/cu cm, and total film thickness greater than 1.0 micro m. No mobility enhancement was seen in n-type multilayer films grown on (111) Si or in p-type multilayer films. The structure of the films was investigated was using SEM, TEM, AES, SIMS, and X-ray double crystal diffraction techniques. The film composition profile (AES, SIMS) showed that the transition region between layers is of the order of about 100A. The TEM examination revealed a well defined layered structure with fairly sharp interfaces and good crystalline quality. It also showed that the first few layers of the film (closest to the substrate) are uneven, most probably due to the initial growth pattern of the epitaxial film where growth occurs first in isolated islands that eventually growth and coalesce. The X-ray diffraction measurement determined the elastic strain and strain relief in the alloy layers of the film and the elastic strain in the intervening Si layers
The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency
OBJECTIVE. Hypospadias is a frequent congenital anomaly but in most cases an underlying cause is not found. Steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) is a key regulator of human sex development and an increasing number of SF-1 (NR5A1) mutations are reported in 46,XY disorders of sex development (DSD). We hypothesized that NR5A1 mutations could be identified in boys with hypospadias.
DESIGN AND METHODS. Mutational analysis of NR5A1 in 60 individuals with varying degrees of hypospadias from the German DSD network.
RESULTS. Heterozygous NR5A1 mutations were found in three out of 60 cases. These three individuals represented the most severe end of the spectrum studied as they presented with penoscrotal hypospadias, variable androgenization of the phallus and undescended testes (three out of 20 cases (15%) with this phenotype). Testosterone was low in all three patients and inhibin B/anti-Müllerian hormone (AMH) were low in two patients. Two patients had a clear male gender assignment. Gender re-assignment to male occurred in the third case. Two patients harbored heterozygous nonsense mutations (p.Q107X/WT, p.E11X/WT). One patient had a heterozygous splice site mutation in intron 2 (c.103-3A/WT) predicted to disrupt the main DNA-binding motif. Functional studies of the nonsense mutants showed impaired transcriptional activation of an SF-1-responsive promoter (Cyp11a). To date, adrenal insufficiency has not occurred in any of the patients.
CONCLUSIONS. SF-1 (NR5A1) mutations should be considered in 46,XY individuals with severe (penoscrotal) hypospadias, especially if undescended testes, low testosterone, or low inhibin B/AMH levels are present. SF-1 mutations in milder forms of idiopathic hypospadias are unlikely to be common
Measuring spectrum of spin wave using vortex dynamics
We propose to measure the spectrum of magnetic excitation in magnetic
materials using motion of vortex lattice driven by both ac and dc current in
superconductors. When the motion of vortex lattice is resonant with oscillation
of magnetic moments, the voltage decreases at a given current. From transport
measurement, one can obtain frequency of the magnetic excitation with the wave
number determined by vortex lattice constant. By changing the lattice constant
through applied magnetic fields, one can obtains the spectrum of the magnetic
excitation up to a wave vector of order .Comment: 4 pages, 2 figure
Numerical simulation of heavy fermions in an SU(2)_L x SU(2)_R symmetric Yukawa model
An exploratory numerical study of the influence of heavy fermion doublets on
the mass of the Higgs boson is performed in the decoupling limit of a chiral
symmetric Yukawa model with mirror fermions. The
behaviour of fermion and boson masses is investigated at infinite bare quartic
coupling on , and lattices. A first
estimate of the upper bound on the renormalized quartic coupling as a function
of the renormalized Yukawa-coupling is given.Comment: 15 pp + 11 Figures appended as Postscript file
Characteristics of Bose-Einstein condensation in an optical lattice
We discuss several possible experimental signatures of the Bose-Einstein
condensation (BEC) transition for an ultracold Bose gas in an inhomogeneous
optical lattice. Based on the commonly used time-of-flight imaging technique,
we show that the momentum-space density profile in the first Brillouin zone,
supplemented by the visibility of interference patterns, provides valuable
information about the system. In particular, by crossing the BEC transition
temperature, the appearance of a clear bimodal structure sets a qualitative and
universal signature of this phase transition. Furthermore, the momentum
distribution can also be applied to extract the condensate fraction, which may
serve as a promising thermometer in such a system.Comment: 12 pages, 13 figures; Revised version with new figures; Phys. Rev. A
77, 043626 (2008
- …
