50 research outputs found

    Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells

    Get PDF
    The oral anaerobe Porphyromonas gingivalis is associated with the development of cancers including oral squamous cell carcinoma (OSCC). Here we show that infection of gingival epithelial cells with P. gingivalis induces expression and nuclear localization of the ZEB1 transcription factor which controls epithelial-mesenchymal transition (EMT). P. gingivalis also caused an increase in ZEB1 expression as a dual species community with Fusobacterium nucleatum or Streptococcus gordonii. Increased ZEB1 expression was associated with elevated ZEB1 promoter activity and did not require suppression of the miR-200 family of micro RNAs. P. gingivalis strains lacking the FimA fimbrial protein were attenuated in their ability to induce ZEB1 expression. ZEB1 levels correlated with an increase in expression of mesenchymal markers, including vimentin and MMP-9, and with enhanced migration of epithelial cells into matrigel. Knockdown of ZEB1 with siRNA prevented the P. gingivalis-induced increase in mesenchymal markers and epithelial cell migration. Oral infection of mice by P. gingivalis increased ZEB1 levels in gingival tissues, and intracellular P. gingivalis were detected by antibody staining in biopsy samples from OSCC. These findings indicate that FimA-driven ZEB1 expression could provide a mechanistic basis for a P. gingivalis contribution to OSCC

    Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer

    Get PDF
    BACKGROUND: Mounting evidence suggests a causal relationship between specific bacterial infections and the development of certain malignancies. However, the possible role of the keystone periodontal pathogen, Porphyromonas gingivalis, in esophageal squamous cell carcinoma (ESCC) remains unknown. Therefore, we examined the presence of P. gingivalis in esophageal mucosa, and the relationship between P. gingivalis infection and the diagnosis and prognosis of ESCC. METHODS: The presence of P. gingivalis in the esophageal tissues from ESCC patients and normal controls was examined by immunohistochemistry using antibodies targeting whole bacteria and its unique secreted protease, the gingipain Kgp. qRT-PCR was used as a confirmatory approach to detect P. gingivalis 16S rDNA. Clinicopathologic characteristics were collected to analyze the relationship between P. gingivalis infection and development of ESCC. RESULTS: P. gingivalis was detected immunohistochemically in 61 % of cancerous tissues, 12 % of adjacent tissues and was undetected in normal esophageal mucosa. A similar distribution of lysine-specific gingipain, a catalytic endoprotease uniquely secreted by P. gingivalis, and P. gingivalis 16S rDNA was also observed. Moreover, statistic correlations showed P. gingivalis infection was positively associated with multiple clinicopathologic characteristics, including differentiation status, metastasis, and overall survival rate. CONCLUSION: These findings demonstrate for the first time that P. gingivalis infects the epithelium of the esophagus of ESCC patients, establish an association between infection with P. gingivalis and the progression of ESCC, and suggest P. gingivalis infection could be a biomarker for this disease. More importantly, these data, if confirmed, indicate that eradication of a common oral pathogen could potentially contribute to a reduction in the overall ESCC burden. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13027-016-0049-x) contains supplementary material, which is available to authorized users

    Biomechanics of the Knee

    Full text link

    Immunomagnetic B cell isolation as a tool to study blood cell subsets and enrich B cell transcripts

    No full text
    Abstract Objective Transcriptional profiling of immune cells is an indispensable tool in biomedical research; however, heterogenous sample types routinely used in transcriptomic studies may mask important cell type-specific transcriptional differences. Techniques to isolate desired cell types are used to overcome this limitation. We sought to evaluate the use of immunomagnetic B cell isolation on RNA quality and transcriptional output. Additionally, we aimed to develop a B cell gene signature representative of a freshly isolated B cell population to be used as a tool to verify isolation efficacy and to provide a transcriptional standard for evaluating maintenance or deviation from traditional B cell identity. Results We found RNA quality and RNA-sequencing output to be comparable between donor-matched PBMC, whole blood, and B cells following negative selection by immunomagnetic B cell isolation. Transcriptional analysis enabled the development of an 85 gene B cell signature. This signature effectively clustered isolated B cells from heterogeneous sample types in our study and naïve and memory B cells when applied to transcriptional data from a published source. Additionally, by identifying B cell signature genes whose functional role in B cells is currently unknown, our gene signature has uncovered areas for future investigation. </jats:sec

    Additional file 3 of Immunomagnetic B cell isolation as a tool to study blood cell subsets and enrich B cell transcripts

    No full text
    Additional file 3: Table S1. TPM values across Sample Types. Table S2. Lists of differentially expressed genes between sample types. Table S3. Significantly enriched GO terms (p-value < 0.01) from upregulated DEGs in freshly isolated B cells vs PBMC and WB. Table S4. Investigating expression levels of B cell signature genes
    corecore