70 research outputs found

    Neuronal background of positioning of the posterior tentacles in the snail Helix pomatia

    Get PDF
    The location of cerebral neurons innervating the three recently described flexor muscles involved in the orientation of the posterior tentacles as well as their innervation patterns were investigated, applying parallel retrograde Co- and Ni-lysine as well as anterograde neurobiotin tracings via the olfactory and the peritentacular nerves. The neurons are clustered in eight groups in the cerebral ganglion and they send a common innervation pathway via the olfactory nerve to the flexor and the tegumental muscles as well as the tentacular retractor muscle and distinct pathways via the internal and the external peritentacular nerves to these muscles except the retractor muscle. The three anchoring points of the three flexor muscles at the base of the tentacle outline the directions of three force vectors generated by the contraction of the muscles along which they can pull or move the protracted tentacle which enable the protracted tentacle to bend around a basal pivot. In the light of earlier physiological and the present anatomical findings we suggest that the common innervation pathway to the muscles is required to the tentacle withdrawal mechanism whereas the distinct pathways serve first of all the bending of the protracted posterior tentacles during foraging

    The activity of isolated neurons and the modulatory state of an isolated nervous system represent a recent behavioural state

    Get PDF
    Behavioural/motivational state is known to influence nearly all aspects of physiology and behaviour. The cellular basis of behavioural state control is only partially understood. Our investigation, performed on the pond snail Lymnaea stagnalis whose nervous system is useful for work on completely isolated neurons, provided several results related to this problem. First, we demonstrated that the behavioural state can produce long-term changes in individual neurons that persist even after neuron isolation from the nervous system. Specifically, we found that pedal serotonergic neurons that control locomotion show higher activity and lower membrane potential after being isolated from the nervous systems of hungry animals. Second, we showed that the modulatory state (the chemical neuroactive microenvironment of the central ganglia) changes in accordance with the nutritional state of an animal and produces predicted changes in single isolated locomotor neurons. Third, we report that observed hunger-induced effects can be explained by the increased synthesis of serotonin in pedal serotonergic neurons, which has an impact on the electrical activity of isolated serotonergic neurons and the intensity of extrasynaptic serotonin release from the pedal ganglia

    Short GSM mobile phone exposure does not alter human auditory brainstem response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system.</p> <p>Methods</p> <p>Auditory Brainstem Response (ABR) was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years) with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF) emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure.</p> <p>Results</p> <p>Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure.</p> <p>Conclusion</p> <p>The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.</p

    Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris)

    Get PDF
    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (−212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5′ and 3′ UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3′ and 5′ UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene–behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system

    Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures

    Get PDF
    Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(Q(A)Q(B))(−) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications

    Whole body static magnetic field exposure increases thermal nociceptive threshold in the snail, Helix pomatia

    No full text
    We investigated the effect of homogeneous and inhomogeneous static magnetic field (SMF) exposure on the thermal nociceptive threshold of snail in the hot plate test (43 °C). Both homogeneous (hSMF) and inhomogeneous (iSMF) SMF increased the thermo-nociceptive threshold: 40.2%, 29.2%, or 41.7% after an exposure of 20, 30, or 40 min hSMF by p < 0.001, p < 0.0001, or p < 0.001, and 32.7% or 46.2% after an exposure of 20 or 40 min iSMF by p < 0.05 or p < 0.0001. These results suggest that SMF has an antinociceptive effect in snail. On the other hand, naloxone as an atypical opioid antagonist in an amount of 1 μg/g was found to significantly decrease the thermo-nociceptive threshold (41.9% by p < 0.002), which could be antagonized by hSMF exposure implying that hSMF exerts its antinociceptive effect partly via opioid receptors
    corecore