539 research outputs found

    Optimal phase measurements with pure Gaussian states

    Full text link
    We analyze the Heisenberg limit on phase estimation for Gaussian states. In the analysis, no reference to a phase operator is made. We prove that the squeezed vacuum state is the most sensitive for a given average photon number. We provide two adaptive local measurement schemes that attain the Heisenberg limit asymptotically. One of them is described by a positive operator-valued measure and its efficiency is exhaustively explored. We also study Gaussian measurement schemes based on phase quadrature measurements. We show that homodyne tomography of the appropriate quadrature attains the Heisenberg limit for large samples. This proves that this limit can be attained with local projective Von Neuman measurements.Comment: 9 pages. Revised version: two new sections added, revised conclusions. Corrected prose. Corrected reference

    Discrimination of Optical Coherent States using a Photon Number Resolving Detector

    Full text link
    The discrimination of non-orthogonal quantum states with reduced or without errors is a fundamental task in quantum measurement theory. In this work, we investigate a quantum measurement strategy capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using non-probabilistic state discrimination. We find that appropriate postselection of the measurement data of a photon number resolving detector can be used to discriminate two coherent states with small error probability. We compare our new receiver to an optimal intermediate measurement between minimum error discrimination and unambiguous state discrimination.Comment: 5 pages, 4 figure

    The Effect of the LISA Response Function on Observations of Monochromatic Sources

    Full text link
    The Laser Interferometer Space Antenna (LISA) is expected to provide the largest observational sample of binary systems of faint sub-solar mass compact objects, in particular white-dwarfs, whose radiation is monochromatic over most of the LISA observational window. Current astrophysical estimates suggest that the instrument will be able to resolve about 10000 such systems, with a large fraction of them at frequencies above 3 mHz, where the wavelength of gravitational waves becomes comparable to or shorter than the LISA arm-length. This affects the structure of the so-called LISA transfer function which cannot be treated as constant in this frequency range: it introduces characteristic phase and amplitude modulations that depend on the source location in the sky and the emission frequency. Here we investigate the effect of the LISA transfer function on detection and parameter estimation for monochromatic sources. For signal detection we show that filters constructed by approximating the transfer function as a constant (long wavelength approximation) introduce a negligible loss of signal-to-noise ratio -- the fitting factor always exceeds 0.97 -- for f below 10mHz, therefore in a frequency range where one would actually expect the approximation to fail. For parameter estimation, we conclude that in the range 3mHz to 30mHz the errors associated with parameter measurements differ from about 5% up to a factor of 10 (depending on the actual source parameters and emission frequency) with respect to those computed using the long wavelength approximation.Comment: replacement version with typos correcte

    Ziv-Zakai Error Bounds for Quantum Parameter Estimation

    Full text link
    I propose quantum versions of the Ziv-Zakai bounds as alternatives to the widely used quantum Cram\'er-Rao bounds for quantum parameter estimation. From a simple form of the proposed bounds, I derive both a "Heisenberg" error limit that scales with the average energy and a limit similar to the quantum Cram\'er-Rao bound that scales with the energy variance. These results are further illustrated by applying the bound to a few examples of optical phase estimation, which show that a quantum Ziv-Zakai bound can be much higher and thus tighter than a quantum Cram\'er-Rao bound for states with highly non-Gaussian photon-number statistics in certain regimes and also stay close to the latter where the latter is expected to be tight.Comment: v1: preliminary result, 3 pages; v2: major update, 4 pages + supplementary calculations, v3: another major update, added proof of "Heisenberg" limit, v4: accepted by PR

    Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes

    Get PDF
    We examine whether metrological resolution beyond coherent states is a nonclassical effect. We show that this is true for linear detection schemes but false for nonlinear schemes, and propose a very simple experimental setup to test it. We find a nonclassicality criterion derived from quantum Fisher information.Comment: 4 pages, 1 figur

    PPM demodulation: On approaching fundamental limits of optical communications

    Full text link
    We consider the problem of demodulating M-ary optical PPM (pulse-position modulation) waveforms, and propose a structured receiver whose mean probability of symbol error is smaller than all known receivers, and approaches the quantum limit. The receiver uses photodetection coupled with optimized phase-coherent optical feedback control and a phase-sensitive parametric amplifier. We present a general framework of optical receivers known as the conditional pulse nulling receiver, and present new results on ultimate limits and achievable regions of spectral versus photon efficiency tradeoffs for the single-spatial-mode pure-loss optical communication channel.Comment: 5 pages, 6 figures, IEEE ISIT, Austin, TX (2010

    Optimal estimation of quantum observables

    Full text link
    We consider the problem of estimating the ensemble average of an observable on an ensemble of equally prepared identical quantum systems. We show that, among all kinds of measurements performed jointly on the copies, the optimal unbiased estimation is achieved by the usual procedure that consists in performing independent measurements of the observable on each system and averaging the measurement outcomes.Comment: Submitted to J. Math Phy

    Universal measurement apparatus controlled by quantum software

    Full text link
    We propose a quantum device that can approximate any projective measurement on a qubit. The desired measurement basis is selected by the quantum state of a "program register". The device is optimized with respect to maximal average fidelity (assuming uniform distribution of measurement bases). An interesting result is that if one uses two qubits in the same state as a program the average fidelity is higher than if he/she takes the second program qubit in the orthogonal state (with respect to the first one). The average information obtainable by the proposed measurements is also calculated and it is shown that it can get different values even if the average fidelity stays constant. Possible experimental realization of the simplest proposed device is presented.Comment: 4 pages, 2 figures, reference adde

    Extremal covariant measurements

    Full text link
    We characterize the extremal points of the convex set of quantum measurements that are covariant under a finite-dimensional projective representation of a compact group, with action of the group on the measurement probability space which is generally non-transitive. In this case the POVM density is made of multiple orbits of positive operators, and, in the case of extremal measurements, we provide a bound for the number of orbits and for the rank of POVM elements. Two relevant applications are considered, concerning state discrimination with mutually unbiased bases and the maximization of the mutual information.Comment: 11 pages, no figure

    Sub Shot-Noise Phase Sensitivity with a Bose-Einstein Condensate Mach-Zehnder Interferometer

    Full text link
    Bose Einstein Condensates, with their coherence properties, have attracted wide interest for their possible application to ultra precise interferometry and ultra weak force sensors. Since condensates, unlike photons, are interacting, they may permit the realization of specific quantum states needed as input of an interferometer to approach the Heisenberg limit, the supposed lower bound to precision phase measurements. To this end, we study the sensitivity to external weak perturbations of a representative matter-wave Mach-Zehnder interferometer whose input are two Bose-Einstein condensates created by splitting a single condensate in two parts. The interferometric phase sensitivity depends on the specific quantum state created with the two condensates, and, therefore, on the time scale of the splitting process. We identify three different regimes, characterized by a phase sensitivity Δξ\Delta \theta scaling with the total number of condensate particles NN as i) the standard quantum limit ΔΞ∌1/N1/2\Delta \theta \sim 1/N^{1/2}, ii) the sub shot-noise ΔΞ∌1/N3/4\Delta \theta \sim 1/N^{3/4} and the iii) the Heisenberg limit ΔΞ∌1/N\Delta \theta \sim 1/N. However, in a realistic dynamical BEC splitting, the 1/N limit requires a long adiabaticity time scale, which is hardly reachable experimentally. On the other hand, the sub shot-noise sensitivity ΔΞ∌1/N3/4\Delta \theta \sim 1/N^{3/4} can be reached in a realistic experimental setting. We also show that the 1/N3/41/N^{3/4} scaling is a rigorous upper bound in the limit N→∞N \to \infty, while keeping constant all different parameters of the bosonic Mach-Zehnder interferometer.Comment: 4 figure
    • 

    corecore