14,869 research outputs found

    A theory of the Io phase asymmetry of the Jovian decametric radiation

    Get PDF
    An explanation of an asymmetry in the occurrence probability of the Io-dependent Jovian decametric radiation is proposed. Io generates stronger Alfven waves toward the south when it is in the northern part of the torus. This wave then generates decametric radiation in the northern ionosphere after it reflects in the southern ionosphere. The asymmetry then results from computing the propagation time of the alfven wave along this trajectory. The ray paths of the decameter radiation are calculated using a three dimensional ray tracing program in the Jovian ionosphere. Variations in the expected probability plots are computer for two models of the Jovian ionosphere and global magnetic field, as well as for several choices of the ratio of the radiated frequency to the X-mode cutoff frequency

    GG-prime and GG-primary GG-ideals on GG-schemes

    Full text link
    Let GG be a flat finite-type group scheme over a scheme SS, and XX a noetherian SS-scheme on which GG-acts. We define and study GG-prime and GG-primary GG-ideals on XX and study their basic properties. In particular, we prove the existence of minimal GG-primary decomposition and the well-definedness of GG-associated GG-primes. We also prove a generalization of Matijevic-Roberts type theorem. In particular, we prove Matijevic-Roberts type theorem on graded rings for FF-regular and FF-rational properties.Comment: 54pages, added Example 6.16 and the reference [8]. The final versio

    Dynamical electroweak symmetry breaking with superheavy quarks and 2+1 composite Higgs model

    Full text link
    Recently, a new class of models describing the quark mass hierarchy has been introduced. In this class, while the t quark plays a minor role in electroweak symmetry breaking (EWSB), it is crucial in providing the quark mass hierarchy. In this paper, we analyze the dynamics of a particular model in this class, in which the b' and t' quarks of the fourth family are mostly responsible for dynamical EWSB. The low energy effective theory in this model is derived. It has a clear signature, a 2 + 1 structure of composite Higgs doublets: two nearly degenerate \Phi_{b'} and \Phi_{t'}, and a heavier top-Higgs resonance \Phi_t \sim \bar{t}_{R}(t,b)_L. The properties of these composites are described in detail, and it is shown that the model satisfies the electroweak precision data constraints. The signatures of these composites at the Large Hadron Collider are briefly discussed.Comment: 17 pages, 3 figures; v.2: references and clarifications added: PRD versio

    Ihara's zeta function for periodic graphs and its approximation in the amenable case

    Get PDF
    In this paper, we give a more direct proof of the results by Clair and Mokhtari-Sharghi on the zeta functions of periodic graphs. In particular, using appropriate operator-algebraic techniques, we establish a determinant formula in this context and examine its consequences for the Ihara zeta function. Moreover, we answer in the affirmative one of the questions raised by Grigorchuk and Zuk. Accordingly, we show that the zeta function of a periodic graph with an amenable group action is the limit of the zeta functions of a suitable sequence of finite subgraphs.Comment: 21 pages, 4 figure

    Non-commutativity and Open Strings Dynamics in Melvin Universes

    Full text link
    We compute the Moyal phase factor for open strings ending on D3-branes wrapping a NSNS Melvin universe in a decoupling limit explicitly using world sheet formalism in cylindrical coordinates.Comment: 12 pages, 1 figure, references adde

    Coupled-channel calculation of bound and resonant spectra of Lambda-9Be and Lambda-13C hypernuclei

    Full text link
    A Multi-Channel Algebraic Scattering (MCAS) approach has been used to analyze the spectra of two hyper-nuclear systems, Lambda-9Be and Lambda-13C. The splitting of the two odd-parity excited levels (1/2^- and 3/2^-) at 11 MeV excitation in Lambda-13C is driven mainly by the weak Lambda-nucleus spin-orbit force, but the splittings of the 3/2^+ and 5/2^+ levels in both Lambda-9Be and Lambda-13C have a different origin. These cases appear to be dominated by coupling to the collective 2+ states of the core nuclei. Using simple phenomenological potentials as input to the MCAS method, the observed splitting and level ordering in Lambda-9Be is reproduced with the addition of a weak spin-spin interaction acting between the hyperon and the spin of the excited target. With no such spin-spin interaction, the level ordering in Lambda-9Be is inverted with respect to that currently observed. In both hyper-nuclei, our calculations suggest that there are additional low-lying resonant states in the Lambda-nucleus continua.Comment: 15 pages, 3 figures, 6 tables. To be published in International Journal of Modern Physics

    Continuous variable entanglement on a chip

    Full text link
    Encoding quantum information in continuous variables (CV)---as the quadrature of electromagnetic fields---is a powerful approach to quantum information science and technology. CV entanglement---light beams in Einstein-Podolsky-Rosen (EPR) states---is a key resource for quantum information protocols; and enables hybridisation between CV and single photon discrete variable (DV) qubit systems. However, CV systems are currently limited by their implementation in free-space optical networks: increased complexity, low loss, high-precision alignment and stability, as well as hybridisation, demand an alternative approach. Here we show an integrated photonic implementation of the key capabilities for CV quantum technologies---generation and characterisation of EPR beams in a photonic chip. Combined with integrated squeezing and non-Gaussian operation, these results open the way to universal quantum information processing with light

    Non-Linear/Non-Commutative Non-Abelian Monopoles

    Get PDF
    Using recently proposed non-linearly realized supersymmetry in non-Abelian gauge theory corrected to the order (alpha')^2, we derive the non-linear BPS equations in the background B-field for the U(2) monopoles and instantons. We show that these non-Abelian non-linear BPS equations coincide with the non-commutative anti-self-dual equations via the Seiberg-Witten map.Comment: 9 pages, LaTe
    corecore