295,406 research outputs found

    Mounting, support, and isolation of various components of a hydrogen maser

    Get PDF
    Polytetrafluoroethylene tubing partially collapsed during assembly protects the shields from thermal expansion stress in isothermal and magnetic canisters. Thermal insulation between the shields is made from epoxy foam cast in position and cured under high temperature. Stacked mounting array supports the maser's hexapole magnet and hydrogen atom source

    Long duration thermal hard X-ray sources observed in two eruptive flares

    Get PDF
    We present observations of two eruptive flares on 17 of December 2006 (C1.9) and 19 of May 2007 (B9.7) which had good coverage with both Hinode and RHESSI. In these flares we see a long lived, gradual thermal hard X-ray source of low emission measure and, relative to the loops observed with GOES and XRT, high temperature. The lack of a non-thermal hard X-ray component and impulsive behaviour is inconsistent with electron beam driven chromospheric evaporation

    Calculating the global contribution of coralline algae to carbon burial

    Get PDF
    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term time scales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological time scales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Organic and inorganic production were estimated at 330 g C m−2 yr−1 and 880 g CaCO3 m−2 yr−1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr−1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr−1. Using this potential carbon storage by coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr−1 suggesting a total potential carbon sink of 1.6 × 109 t C yr−1. Coralline algae therefore have production rates similar to mangroves, saltmarshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store

    Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion

    Get PDF
    The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measuremen

    Closed-loop two-echelon repairable item systems

    Get PDF
    In this paper we consider closed loop two-echelon repairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal operational condition. Each production facility consists of a number of identical machines which may fail incidentally. Each repair facility may be considered to be a multi-server station, while any transport from the depot to the bases is modeled as an ample server. At all bases as well as at the depot, ready-for-use spare parts (machines) are kept in stock. Once a machine in the production cell of a certain base fails, it is replaced by a ready-for-use machine from that base's stock, if available. The failed machine is either repaired at the base or repaired at the central repair facility. In the case of local repair, the machine is added to the local spare parts stock as a ready-for-use machine after repair. If a repair at the depot is needed, the base orders a machine from the central spare parts stock to replenish its local stock, while the failed machine is added to the central stock after repair. Orders are satisfied on a first-come-first-served basis while any requirement that cannot be satisfied immediately either at the bases or at the depot is backlogged. In case of a backlog at a certain base, that base's production cell performs worse. To determine the steady state probabilities of the system, we develop a slightly aggregated system model and propose a special near-product-form solution that provides excellent approximations of relevant performance measures. The depot repair shop is modeled as a server with state-dependent service rates, of which the parameters follow from an application of Norton's theorem for Closed Queuing Networks. A special adaptation to a general Multi-Class MDA algorithm is proposed, on which the approximations are based. All relevant performance measures can be calculated with errors which are generally less than one percent, when compared to simulation results. \u

    Metallicities of galaxies in the nearby Lynx-Cancer void

    Full text link
    Does the void environment have a sizable effect on the evolution of dwarf galaxies? If yes, the best probes should be the most fragile least massive dwarfs. We compiled a sample of about one hundred dwarfs with M_B in the range -12 to -18 mag, falling within the nearby Lynx-Cancer void. The goal is to study their evolutionary parameters -- gas metallicity and gas mass-fraction, and to address the epoch of the first substantial episode of Star Formation. Here we present and discuss the results of O/H measurements in 38 void galaxies, among which several the most metal-poor galaxies are found with the oxygen abundances of 12+log(O/H)=7.12-7.3 dex.Comment: 2 pages, one figure. To appear in proceedings of 'Environment and the Formation of Galaxies: 30 years later,' (Lisbon, September 2010), published by Springer-Verla
    corecore