8,153 research outputs found

    Drop deployment system for crystal growth apparatus

    Get PDF
    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals

    Investigating Relationships and Semantic Sets amongst System Lifecycle Properties (Ilities)

    Get PDF
    The ilities are properties of engineering systems that often manifest and determine value after a system is put into initial use (e.g. resilience, interoperability, flexibility). Rather than being primary functional requirements, these properties concern wider system impacts with respect to time and stakeholders. Over the past decade there has been increasing attention to ilities in industry, government and academia. Our research suggests that investigating ilities in sets may be more meaningful than study of single ilities in isolation. Some ilities are closely related and do in fact form semantic sets. Here, we use two methods to investigate over twenty ilities in terms of their prevalence and their interrelationships. We look for trends related to ilities of interest in relation to system type and an understanding of their collective use. First, we conducted a prevalence analysis of 22 ilities using both the internet as well as the Compendex/Inspec database as a source. We found over 1,275,000 scientific articles published between 1884 and 2010 and over 1.9 billion hits on the internet, exposing a clear prevalence-based ranking of ilities. Two questions we seek to address are: why and how are the ilities related to one another, and what can we do with this information. Initial steps to answer the first question include a 2-tupel-correlation matrix analysis that exposes the strongest relationships amongst ilities based on concurrent usage. Moreover, we conducted some preliminary experiments that indicate that a hierarchy of ilities with a few major groupings may be most useful. The overall objective for this research is to develop a formalframework and prescriptive guidance for effectively incorporating sets of ilities intothe design of complex engineering systems

    Effective Theories for Circuits and Automata

    Full text link
    Abstracting an effective theory from a complicated process is central to the study of complexity. Even when the underlying mechanisms are understood, or at least measurable, the presence of dissipation and irreversibility in biological, computational and social systems makes the problem harder. Here we demonstrate the construction of effective theories in the presence of both irreversibility and noise, in a dynamical model with underlying feedback. We use the Krohn-Rhodes theorem to show how the composition of underlying mechanisms can lead to innovations in the emergent effective theory. We show how dissipation and irreversibility fundamentally limit the lifetimes of these emergent structures, even though, on short timescales, the group properties may be enriched compared to their noiseless counterparts.Comment: 11 pages, 9 figure

    The effects of charge transfer inefficiency (CTI) on galaxy shape measurements

    Get PDF
    (Abridged) We examine the effects of charge transfer inefficiency (CTI) during CCD readout on galaxy shape measurements required by studies of weak gravitational lensing. We simulate a CCD readout with CTI such as that caused by charged particle radiation damage. We verify our simulations on data from laboratory-irradiated CCDs. Only charge traps with time constants of the same order as the time between row transfers during readout affect galaxy shape measurements. We characterize the effects of CTI on various galaxy populations. We baseline our study around p-channel CCDs that have been shown to have charge transfer efficiency up to an order of magnitude better than several models of n-channel CCDs designed for space applications. We predict that for galaxies furthest from the readout registers, bias in the measurement of galaxy shapes, Delta(e), will increase at a rate of 2.65 +/- 0.02 x 10^(-4) per year at L2 for accumulated radiation exposure averaged over the solar cycle. If uncorrected, this will consume the entire shape measurement error budget of a dark energy mission within about 4 years. Software mitigation techniques demonstrated elsewhere can reduce this by a factor of ~10, bringing the effect well below mission requirements. CCDs with higher CTI than the ones we studeied may not meet the requirements of future dark energy missions. We discuss ways in which hardware could be designed to further minimize the impact of CTI.Comment: 11 pages, 6 figures, and 2 tables. Accepted for publication in PAS

    Lagrangian least-squares prediction of solar activity

    Get PDF
    Statistical prediction methods for short-term (months) and long-term (years) forecasting of solar activity were studied. The comparisons indicate that better predictions, in a chi square sense, are possible by lining up the maximum (or minimums, or both) by cycle number. Evidence is also presented to support the existence of an aperiodic variation in the periods as well as the amplitudes

    Quantifying the Energetics and Length Scales of Carbon Segregation to Fe Symmetric Tilt Grain Boundaries Using Atomistic Simulations

    Full text link
    Segregation of impurities to grain boundaries plays an important role in both the stability and macroscopic behavior of polycrystalline materials. The research objective in this work is to better characterize the energetics and length scales involved with the process of solute and impurity segregation to grain boundaries. Molecular dynamics simulations are used to calculate the segregation energies for carbon within multiple grain boundary sites over a database of 125 symmetric tilt grain boundaries in Fe. The simulation results show that the majority of atomic sites near the grain boundary have segregation energies lower than in the bulk. Moreover, depending on the boundary, the segregation energies approach the bulk value approximately 5-12 \AA\ away from the center of the grain boundary, providing an energetic length scale for carbon segregation. A subsequent data reduction and statistical representation of this dataset provides critical information such as about the mean segregation energy and the associated energy distributions for carbon atoms as a function of distance from the grain boundary, which quantitatively informs higher scale models with energetics and length scales necessary for capturing the segregation behavior of impurities in Fe. The significance of this research is the development of a methodology capable of ascertaining segregation energies over a wide range of grain boundary character (typical of that observed in polycrystalline materials), which herein has been applied to carbon segregation in a specific class of grain boundaries in iron
    • …
    corecore