893 research outputs found

    Carbon dioxide emissions from diesel and compressed natural gas buses during acceleration

    Get PDF
    Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions

    Drug resistance mediating Plasmodium falciparum polymorphisms and clinical presentations of parasitaemic children in Uganda.

    Get PDF
    BackgroundPlasmodium falciparum genetic polymorphisms that mediate altered drug sensitivity may impact upon virulence. In a cross-sectional study, Ugandan children with infections mutant at pfcrt K76T, pfmdr1 N86Y, or pfmdr1 D1246Y had about one-fourth the odds of symptomatic malaria compared to those with infections with wild type (WT) sequences. However, results may have been confounded by greater likelihood in those with symptomatic disease of higher density mixed infections and/or recent prior treatment that selected for WT alleles.MethodsPolymorphisms in samples from paired episodes of asymptomatic and symptomatic parasitaemia in 114 subjects aged 4-11 years were followed longitudinally in Tororo District, Uganda. Paired episodes occurred within 3-12 months of each other and had no treatment for malaria in the prior 60 days. The prevalence of WT, mixed, and mutant alleles was determined using multiplex ligase detection reaction-fluorescent microsphere assays.ResultsConsidering paired episodes in the same subject, the odds of symptomatic malaria were lower for infections with mutant compared to WT or mixed sequence at N86Y (OR 0.26, 95% CI 0.09-0.79, p = 0.018), but not K76T or D1246Y. However, symptomatic episodes (which had higher densities) were more likely than asymptomatic to be mixed (for N86Y OR 2.0, 95% CI 1.04-4.0, p = 0.036). Excluding mixed infections, the odds of symptomatic malaria were lower for infections with mutant compared to WT sequence at N86Y (OR 0.33, 95% CI 0.11-0.98, p = 0.046), but not the other alleles. However, if mixed genotypes were grouped with mutants in this analysis or assuming that mixed infections consisted of 50% WT and 50% mutant genotypes, the odds of symptomatic infection did not differ between infections that were mutant or WT at the studied alleles.ConclusionsAlthough infections with only the mutant pfmdr1 86Y genotype were associated with symptomatic infection, this association could primarily be explained by greater parasite densities and therefore greater prevalence of mixed infections in symptomatic children. These results indicate limited association between the tested polymorphisms and risk of symptomatic disease and highlight the value of longitudinal studies for assessing associations between parasite factors and clinical outcomes

    Taking Sharper Pictures of Malaria with CAMERAs: Combined Antibodies to Measure Exposure Recency Assays.

    Get PDF
    Antibodies directed against malaria parasites are easy and inexpensive to measure but remain an underused surveillance tool because of a lack of consensus on what to measure and how to interpret results. High-throughput screening of antibodies from well-characterized cohorts offers a means to substantially improve existing assays by rationally choosing the most informative sets of responses and analytical methods. Recent data suggest that high-resolution information on malaria exposure can be obtained from a small number of samples by measuring a handful of properly chosen antibody responses. In this review, we discuss how standardized multi-antibody assays can be developed and efficiently integrated into existing surveillance activities, with potential to greatly augment the breadth and quality of information available to direct and monitor malaria control and elimination efforts

    The Neon Nova. III. The Infrared Light Curves of Nova QU Vulpeculae (Nova Vul 1984 #2)

    Get PDF
    We report 1.25 to 19.5 ”m broadband infrared (IR) photometric measurements acquired during an eight year period on the prototypical ONeMg “neon nova” QU Vulpeculae (Nova Vul 1984 #2). The energy distribution of the ejecta evolved through several phases. An early free-free emission phase was followed by an IR coronal phase characterized by the appearance of strong emission lines from forbidden atomic transitions. The lines of [Ne Vi] at 7.6 /xm, and [Ne il] at 12.8 ”m were especially strong during the coronal phase. A small amount of silicate dust condensed in the ejecta after about a year. The evidence provided by our IR observations for high abundances of metals in the ejecta of QU Vul is reviewed. We present the IR light curves of QU Vul, and show that the temporal development of its persistent IR coronal emission phase was evident in the broadband K (2.3 ”m) and L (3.6 ”m) photometry. Using data from our previous studies of classical novae, we suggest that K and L photometry can distinguish between the slower ONeMg novae with persistent IR coronal activity and CO novae that produce copious quantities of circumstellar dust. The most striking signature is produced in the L band, which contains emission from [Mg Vlll] at 3.02 ”m, [A1 Vi] at 3.66 ”m, and [Si ix] at 3.92 ”m. We comment on the peculiar tendency of the IR light curves of novae to decay exponentially

    Biosignatures of Exposure/Transmission and Immunity.

    Get PDF
    A blood test that captures cumulative exposure over time and assesses levels of naturally acquired immunity (NAI) would provide a critical tool to monitor the impact of interventions to reduce malaria transmission and broaden our understanding of how NAI develops around the world as a function of age and exposure. This article describes a collaborative effort in multiple International Centers of Excellence in Malaria Research (ICEMRs) to develop such tests using malaria-specific antibody responses as biosignatures of transmission and immunity. The focus is on the use of Plasmodium falciparum and Plasmodium vivax protein microarrays to identify a panel of the most informative antibody responses in diverse malaria-endemic settings representing an unparalleled spectrum of malaria transmission and malaria species mixes before and after interventions to reduce malaria transmission

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings
    • 

    corecore